# Tipo com guia de baixo perfil

# Série **CY1F**

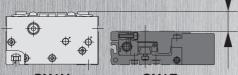
ø10, ø15, ø25



CY3B CY3R CY1S -Z

CY1L CY1H

CY1F CYP


**D**-□

-X

# "Baixo perfil", "corpo compacto" e "leve"

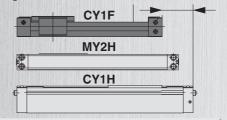


Altura reduzida em 29%



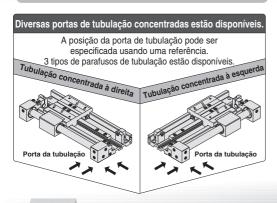
CY1H

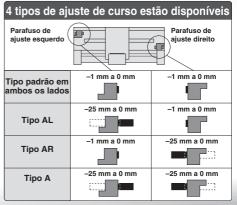
CY1F


| Altura |      |             | mm          |
|--------|------|-------------|-------------|
| Série  | ø10  | ø <b>15</b> | ø <b>25</b> |
| CY1F   | 28   | 34          | 46          |
| CY1H   | 39,5 | 46          | 63          |
|        |      |             |             |

Cilindro sem haste acoplado magneticamente: guia de baixo perfil

Série CY1F: Ø10, Ø15, Ø25


## Corpo compacto


Comprimento total reduzido em 31%



| Comprimento total    |                 |     |             |  |  |  |  |  |
|----------------------|-----------------|-----|-------------|--|--|--|--|--|
| Série                | ø10             | ø15 | Ø <b>25</b> |  |  |  |  |  |
| CY1F                 | 198             | 205 | 240         |  |  |  |  |  |
| CY1H                 | 225             | 294 | 350         |  |  |  |  |  |
| MY2H                 | _               | 260 | 310         |  |  |  |  |  |
| * Para cilindro de d | curso de 100 mm |     |             |  |  |  |  |  |

Comprimento total reduzido em 22% em comparação com a Série MY2H

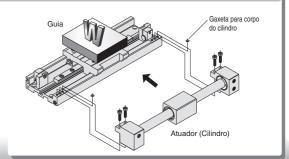






#### 

| Peso               |                 |     | kg          |
|--------------------|-----------------|-----|-------------|
| Série              | ø10             | ø15 | ø <b>25</b> |
| CY1F               | 0,7             | 1,1 | 2,5         |
| CY1H               | 1,0             | 2,2 | 4,6         |
| MY2H               | _               | 1,3 | 3,2         |
| * Para cilindro de | curso de 100 mm |     |             |


### Diâmetros disponíveis ø10, 15, 25

|    | Modelo | Diâmetro |    |     |     |          | Cur      | so pa | drão (   | mm)      | AND SECTION SECTION | 001028104141104 | 191120120120 |          | Curso  | Amortecimento | Direções da             |
|----|--------|----------|----|-----|-----|----------|----------|-------|----------|----------|---------------------|-----------------|--------------|----------|--------|---------------|-------------------------|
| F. | wodelo | (mm)     | 50 | 100 | 150 | 200      | 250      | 300   | 350      | 400      | 450                 | 500             | 550          | 600      | máximo | Amortecimento | tubulação               |
|    |        | 10       | 0  | •   | 0   | 0        | <b>-</b> | 0     |          |          |                     |                 |              |          | 500    | Amortecedor   | Tubulação concentrada à |
|    | CY1F   | 15       | •  | -0- | -0- | -0-      | -0-      | -0-   | -0-      | -0-      | <b>-</b>            | <b>-</b>        |              |          | 750    | de impacto    | direita<br>Tubulação    |
|    |        | 25       |    | -   | -   | <b>-</b> | -0-      | 0     | <b>-</b> | <b>-</b> | <b>-</b>            | <b>-</b>        | <b>-</b>     | <b>-</b> | 1200   | integrado     | concentrada à esquerda  |



## O cilindro e a guia estão integrados.

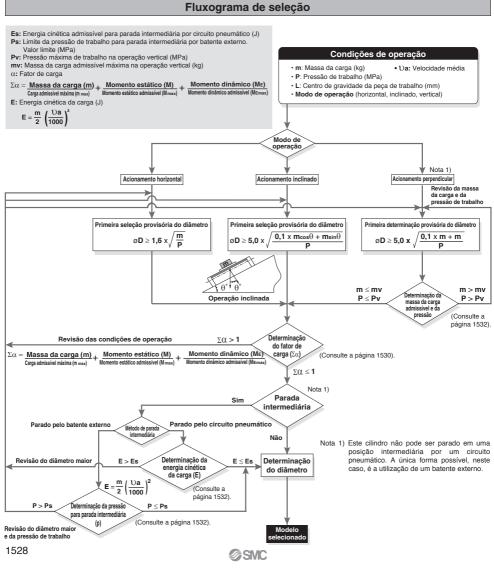
A porção do cilindro pode ser substituída sem interferir na peça de trabalho.



CY3B CY3R CY1S -Z

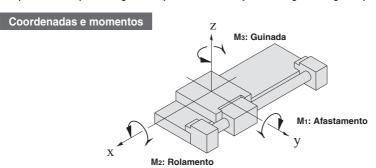
> CY1H CY1F

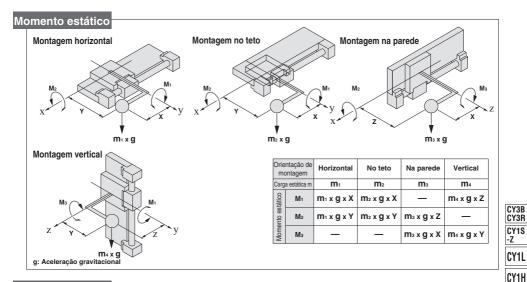
CYP

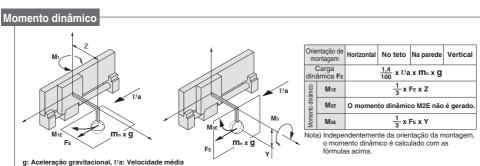

D-□

-X

# Série CY1F Seleção de modelo


A seguir estão as etapas para seleção da série CY1F mais adequada à sua aplicação.




#### Tipos de momento aplicados nos cilindros sem haste

Múltiplos momentos podem ser gerados dependendo da orientação de montagem da carga e da posição do centro de gravidade.







CY1F CYP

D-□

-X□

Technical

#### Momento máximo admissível/Carga máxima admissível

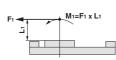
| Modelo | Diâmetro | Momento m | náximo admis   | ssível (N·m) | Carga máxima admissível (kg) |                |                |     |  |  |  |
|--------|----------|-----------|----------------|--------------|------------------------------|----------------|----------------|-----|--|--|--|
| Modelo | (mm)     |           | M <sub>2</sub> | Мз           | m1                           | m <sub>2</sub> | m <sub>3</sub> | m4  |  |  |  |
|        | 10       | 1         | 2              | 1            | 2                            | 2              | 2              | 1,4 |  |  |  |
| CY1F   | 15       | 1,5       | 3              | 1,5          | 5                            | 5              | 5              | 2   |  |  |  |
|        | 25       | 14        | 20             | 14           | 12                           | 12             | 12             | 12  |  |  |  |

Os valores acima são os valores máximos permitidos para o momento e a carga. Consulte cada gráfico em relação ao momento máximo admissível e à carga máxima admissível para uma determinada velocidade do pistão.

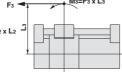
#### Momento máximo admissível

Selecione o momento, estando ele dentro da faixa de limites de operação mostrada nos gráficos. Note que o valor da carga máxima admissível pode por vezes ser excedido mesmo dentro dos limites de operação indicados nos gráficos. Portanto, verifique também a carga admissível para as condições selecionadas.

# Carga (kg)








#### Momento (N·m)







#### <Cálculo do fator de carga da guia>

- 1) A carga máxima admissível (1), o momento estático (2) e o momento dinâmico (3) (no momento do impacto com o batente) devem ser examinados para os cálculos de seleção.
  - \* Para avaliar, use \(\mathcal{U}\)a (velocidade média) para (1) e (2) e \(\mathcal{U}\) (velocidade de impacto \(\mathcal{U}\) = 1,4 \(\mathcal{U}\)a) para (3).
    Calcule m m\(\text{ix}\), para (1) do gr\(\text{difloo}\) do carga m\(\text{axima}\) admissível (m1, m2, m3, m4) e \(\mathrea\) m\(\text{ax}\) para (2) e (3) do gr\(\text{difloo}\) do momento m\(\text{axima}\) ma dimissível ((m1, m2, m3).



- Nota 1) Momento provocado pela carga, com o cilindro na condição de repouso.
- Nota 2) Momento provocado pela carga equivalente ao impacto no final do curso (no momento do impacto com o batente)
- Nota 3) Dependendo do formato da peça de trabalho, podem ocorrer vários momentos. Quando isso acontece, a soma dos fatores de carga ( $\Sigma \alpha$ ) é o total de todos esses momentos.
- 2. Fórmula de referência [Momento dinâmico no impacto]

Use as seguintes fórmulas para calcular o momento dinâmico quando o choque do impacto do batente for levado em consideração.

 $\upsilon$ : Velocidade de impacto (mm/s)

g: Aceleração gravitacional (9,8 m/s²)

ME: Momento dinâmico (N·m)

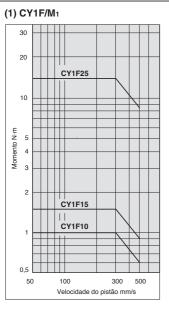
L<sub>1</sub>: Distância ao centro de gravidade da carga (m)

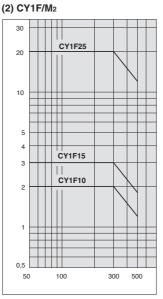
- m: Massa da carga (kg)
- F: Carga (N)
- FE: Carga equivalente ao impacto
- (no momento do impacto com o batente) (N)
- va: Velocidade média (mm/s)
- M: Momento estático (N·m)
- v = 1.4va (mm/s)  $F_E = \frac{1.4}{100} \cdot va \cdot g \cdot m \text{ Nota 4}$

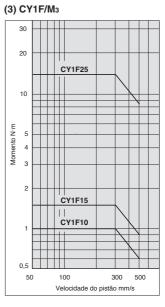
$$\therefore ME = \frac{1}{3} \cdot F_E \cdot L_1 = 0.05 va \cdot m \cdot L_1 \text{ (N·m) }^{Nota 5)}$$

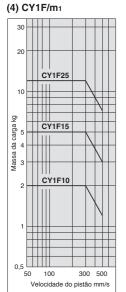
Nota 4)  $\frac{1,4}{100} \cdot \upsilon$ a é um coeficiente sem dimensão usado para calcular a força de impacto.

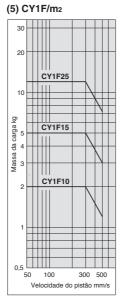
Nota 5) Coeficiente de carga média (=  $\frac{1}{3}$ ):

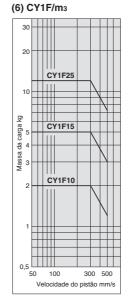

Este coeficiente é usado para a média do momento de carga máxima no momento do impacto com o batente, de acordo com os cálculos da vida útil.

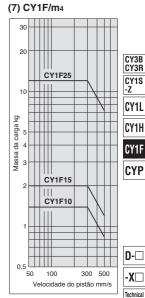

3. Consulte as páginas 1533 e 1534 para ver procedimentos de seleção detalhados.


#### Carga máxima admissível


Selecione a carga, estando ela dentro da faixa de limites mostrada nos gráficos. Note que o valor do momento máximo admissível pode por vezes ser excedido mesmo dentro dos limites de operação indicados nos gráficos. Portanto, verifique também o momento admissível para as condições selecionadas


# Seleção de modelo **Série CY1F**














#### Precauções na operação vertical e na parada intermediária

#### **Acionamento vertical**

#### 1. Operação vertical

Na operação vertical, observe a massa da carga máxima e a pressão máxima de trabalho mostradas na tabela abaixo para evitar uma queda devido ao escorregamento dos acoplamentos magnéticos.

#### 

Se a massa da carga máxima ou a pressão máxima de trabalho for excedida, ocorrerá o escorregamento do acoplamento magnético.

| Diâmetro<br>(mm) | Peso máximo da carga mv<br>(kg) | Pressão máxima de trabalho Pv<br>(MPa) |
|------------------|---------------------------------|----------------------------------------|
| 10               | 1,4                             | 0,55                                   |
| 15               | 2,0                             | 0,65                                   |
| 25               | 12                              | 0,65                                   |

Quando o cilindro é montado verticalmente ou na lateral, um cursor pode se mover para baixo devido ao próprio peso ou à massa da peça de trabalho. Se uma posição de parada precisa for necessária no final ou no meio do curso, use um batente externo para assegurar o posicionamento preciso.

#### Parada intermediária

1. Parada intermediária pelo batente externo ou ajuste de curso com parafuso de ajuste. Observe o limite máximo de pressão na tabela abaixo no caso de parada intermediária por um batente externo ou ajuste de curso com o parafuso de ajuste fixado.

#### 

Tenha cuidado se o limite de pressão de trabalho for ultrapassado, pois ocorrerá o escorregamento do acoplamento magnético.

| Diâmetro<br>(mm) | Força de retenção<br>(N) | Limite da pressão de trabalho<br>para parada intermediária Ps<br>(MPa) |
|------------------|--------------------------|------------------------------------------------------------------------|
| 10               | 53,9                     | 0,55                                                                   |
| 15               | 137                      | 0,65                                                                   |
| 25               | 363                      | 0,65                                                                   |

#### 2. A carga é parada pelo circuito pneumático.

Observe a energia cinética máxima na tabela abaixo no caso da carga ser parada em uma posição intermediária por um circuito pneumático.

Note que a parada intermediária por um circuito pneumático não está disponível na operação vertical.

#### **∧** Cuidado

Se a energia cinética admissível for excedida, ocorrerá o escorregamento do acoplamento magnético.

| Diâmetro<br>(mm) | Energia cinética admissível para parada intermediária Es (J) |
|------------------|--------------------------------------------------------------|
| 10               | 0,03                                                         |
| 15               | 0,13                                                         |
| 25               | 0,45                                                         |

#### Cálculo da seleção

O cálculo da seleção encontra os fatores de carga ( $\Sigma\Omega$ n) dos itens abaixo, onde o total ( $\Omega$ n) não excede 1.

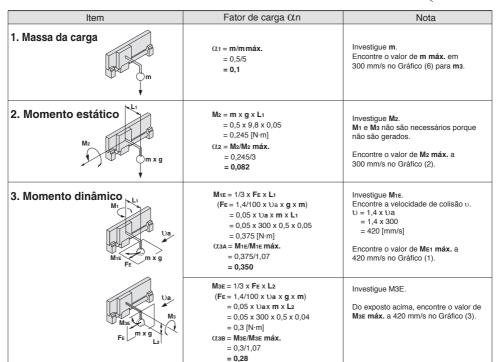
#### $\Sigma \alpha n = \alpha_1 + \alpha_2 + \alpha_3 \le 1$

| Item                     | Fator de carga αn    | Nota                                                                                             |
|--------------------------|----------------------|--------------------------------------------------------------------------------------------------|
| 1. Massa da carga máxima | Ot = m/mmáx          | Analise m<br>m máx. é a massa da carga máxima em va                                              |
| 2. Momento estático      | CL2 = M/Mmáx         | Analise M1, M2, M3<br>Mmáx é o momento admissível em va                                          |
| 3. Momento dinâmico      | Cl3 = Me/Memáx       | Analise M <sub>1E</sub> , M <sub>2E</sub> , M <sub>3E</sub><br>MEmáx é o momento admissível em υ |
| n. Velocida              | de de colisão, pa: ' | Velocidade média                                                                                 |

#### Exemplo de cálculo 1

#### Condições de operação

Cilindro: CY1F15


Mecanismo manteiga do terminal: padrão (amortecedor de impacto)

Montagem: na parede

Velocidade (média): Ua = 300 [mm/s]

Massa da carga: m = 0,5 [kg] (excluindo o peso da seção do braço)

L2 = 40 [mm]



Do exposto acima,

 $\Sigma \alpha n = \alpha_1 + \alpha_2 + \alpha_{3A} + \alpha_{3B} = 0, 1 + 0,082 + 0,35 + 0,28 = 0,812$ 

De  $\Sigma \alpha \mathbf{n} = 0.812 \le 1$ , é aplicável.



CY3B CY3R CY1S

CY1L CY1H

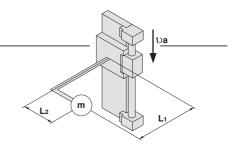
CY1F

CYP

D-□

-X□ Technical

#### Exemplo de cálculo 2


#### Condições de operação

Cilindro: CY1F25

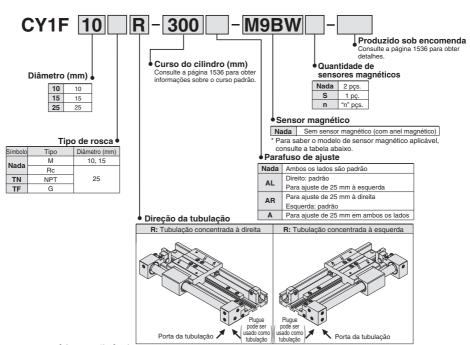
Mecanismo manteiga do terminal: padrão (amortecedor de impacto)

Mescalistio finalitega do terminal. Padrao (amortecedo de impact Montagem: montagem vertical Velocidade (média): Ua = 300 [mm/s] Massa da carga: m = 3 [kg] (excluindo o peso da seção do braço)

L1 = 50 [mm] L2 = 40 [mm]



| Item                                                                                                                                                                                                                                                           | Fator de carga αn                                                                                                                                                                                                                                                                                                                                                                     | Nota                                                                                                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Massa da carga                                                                                                                                                                                                                                              | C.1 = m/m máx.<br>= 3/12<br>= 0,25                                                                                                                                                                                                                                                                                                                                                    | Investigue <b>m</b> .<br>Encontre o valor de <b>m máx.</b> a<br>300 mm/s no Gráfico (7) para <b>m</b> 4.                                            |  |  |  |  |
| 2. Momento estático                                                                                                                                                                                                                                            | $M_1 = m \times g \times L_1$ = 3 x 9,8 x 0,05 = 1,47 [N·m] $C(2a) = M_1/M_1 \text{ máx.}$ = 1,47/14 = 0,105                                                                                                                                                                                                                                                                          | Investigue M1.<br>Encontre o valor de M1 máx. a<br>300 mm/s no Gráfico (1).                                                                         |  |  |  |  |
| M <sub>3</sub> m <sub>x</sub> g                                                                                                                                                                                                                                | M3 = m x g x L2<br>= 3 x 9,8 x 0,04<br>= 1,176 [N·m]<br>C(2b = M3/M3 máx.<br>= 1,176/14<br>= 0,084                                                                                                                                                                                                                                                                                    | Investigue Ms.  Encontre o valor de Ms máx. a 300 mm/s no Gráfico (3).                                                                              |  |  |  |  |
| 3. Momento dinâmico  m x g  M1  L1                                                                                                                                                                                                                             | $\begin{aligned} &\text{M1E} = 1/3 \times \text{Fe} \times \text{L1} \\ &(\text{Fe} = 1,4/100 \times \text{Uax } \text{g} \times \text{m}) \\ &= 0,05 \times \text{Uax } \text{m} \times \text{L1} \\ &= 0,05 \times 300 \times 3 \times 0,05 \\ &= 2,25 \left[\text{N·m}\right] \end{aligned}$ $&\text{C3A} &= \text{M1e/M1e máx.} \\ &= 2,25/10 \\ &= \textbf{0,225} \end{aligned}$ | Investigue M1E.  Encontre a velocidade de colisão U.  U = 1,4 x Ua = 1,4 x 300 = 420 [mm/s] Encontre o valor de M1E máx. a 420 mm/s no Gráfico (1). |  |  |  |  |
| M <sub>3</sub> U <sub>2</sub> U <sub>3</sub> U <sub>3</sub> U <sub>4</sub> U <sub>5</sub> U <sub>7</sub> U <sub>8</sub> U <sub>8</sub> U <sub>9</sub> | MaE = $0.05 \times \text{Uax m} \times \text{L2}$<br>(Fe = $1.4/100 \times \text{Uax g} \times \text{m}$ )<br>= $0.05 \times 300 \times 3 \times 0.04$<br>= $1.8 \text{ [N·m]}$<br>C(3B = M3E/M3E máx.<br>= $1.8/10$<br>= $0.18$                                                                                                                                                      | Investigue Mae.  Do exposto acima, encontre o valor de Mae máx. a 420 mm/s no Gráfico (3).                                                          |  |  |  |  |


Do exposto acima,

 $\Sigma \Omega \mathbf{n} = \Omega \mathbf{1} + \Omega \mathbf{2a} + \Omega \mathbf{2b} + \Omega \mathbf{3A} + \Omega \mathbf{3B} = 0,25 + 0,105 + 0,084 + 0,225 + 0,18 = 0,844$ De  $\Sigma \alpha \mathbf{n} = 0.844 \le 1$ , é aplicável.

### Cilindro sem haste acoplado magneticamente: com guia de baixo perfil

# Série CY1F Ø10, Ø15, Ø25

#### Como pedir



| Se    | nsores magnetico                            | s aplica            | veis        | S/consulte as p        | oáginas i       | 1263 a 137          | '1 para ob                                        | ter mais in   | formaçõe | s sob  | re s | ensc   | res | magnético               | S.             |              |   |   |   |   |       |   |
|-------|---------------------------------------------|---------------------|-------------|------------------------|-----------------|---------------------|---------------------------------------------------|---------------|----------|--------|------|--------|-----|-------------------------|----------------|--------------|---|---|---|---|-------|---|
|       |                                             | Fortunal o          | ada<br>dora | 0-1                    | Tensão da carga |                     | Modelo do sensor magnético Comprimento do cabo (m |               |          |        |      | bo (m) |     |                         |                |              |   |   |   |   |       |   |
| Tipo  | Função especial                             | Entrada<br>elétrica | Lâmpada     | Cabeamento (saída)     |                 | СС                  |                                                   | Damandiaulau  | Em linha | 0,5    | 1    | 3      | 5   | Conector<br>pré-cabeado | Carga a        | plicável     |   |   |   |   |       |   |
|       |                                             | Cictioa             | Lâmp        | (Saida)                |                 |                     | CA                                                | Perpendicular | Em ilnna | (Nada) | (M)  | (L)    | (Z) | pro oaboado             |                |              |   |   |   |   |       |   |
| ólido |                                             |                     |             | 3 fios (NPN)           |                 | 5 1/ 40 1/          |                                                   | M9NV          | M9N      | •      | •    | •      | 0   | 0                       | Circuito       |              |   |   |   |   |       |   |
| - (5  |                                             |                     |             | 3 fios (PNP)           |                 | 5 V, 12 V           |                                                   | M9PV          | M9P      | •      | •    | •      | 0   | 0                       | de CI          |              |   |   |   |   |       |   |
| မ မ   |                                             |                     | Q:          | 2 fios                 | 1               | 12 V                | 1                                                 | M9BV          | M9B      | •      | •    | •      | 0   | 0                       | _              |              |   |   |   |   |       |   |
| ag    |                                             |                     | Sim         | 3 fios (NPN)           |                 | 24 V 5 V, 12 V 12 V |                                                   | M9NWV         | M9NW     | •      | •    | •      | 0   | 0                       | Circuito       | D 1/         |   |   |   |   |       |   |
| est   | Indicação de diagnóstico                    | Grommet             |             | 3 fios (PNP)           | 24 V            |                     | 5 V, 12 V   -                                     | M9PWV         | M9PW     | •      | •    | •      | 0   | 0                       | de CI          | Relé,<br>CLP |   |   |   |   |       |   |
| e     | (indicador de 2 cores)                      |                     |             | 2 fios                 | 1               |                     | 1                                                 | M9BWV         | M9BW     | •      | •    | •      | 0   | 0                       |                | OLI          |   |   |   |   |       |   |
| 5     | Basistanta à faus                           |                     |             | 3 fios (NPN)           |                 |                     | 5 V. 12 V                                         |               | M9NA□□   | 0      | 0    | •      | 0   | 0                       | Circuito       |              |   |   |   |   |       |   |
| ens   | Resistente à água<br>(indicador de 2 cores) |                     |             | 3 fios (PNP)           | 1               | 5 V, 12 V           |                                                   | M9PAV         | M9PA00   | 0      | 0    | •      | 0   | 0                       | de CI          |              |   |   |   |   |       |   |
| Se    | (Illuicador de 2 cores)                     |                     |             | 2 fios                 | 1               | 12 V                | 1                                                 | M9BAV         | M9BA     | 0      | 0    | •      | 0   | 0                       | _              |              |   |   |   |   |       |   |
| -     |                                             |                     |             | 3 fios<br>(equivalente |                 | 5 V                 |                                                   | A96V          | A96      |        |      |        |     |                         | Circuito       |              |   |   |   |   |       |   |
| Sor   | Sensor<br>tipo reed                         |                     | S           |                        | Crammat         | Crammat             | Crammat                                           | Crammat       | Sim      | a NPN) | _    | 5 V    | -   | A96V                    | A96            | •            | _ | • | _ | - | de CI | _ |
| en c  |                                             | Grommet             |             | 2 fios                 | 24 V            | 10.1/               | 100 V                                             | A93V          | A93      | •      | _    | •      | •   | _                       | _              | Relé,        |   |   |   |   |       |   |
| o ‡   | ř                                           |                     | Não         | ] 2 1108               | 24 V            |                     | 100 V ou monos                                    | Δ90V          | Δ90      |        | _    |        | _   | _                       | Circuito de CI |              |   |   |   |   |       |   |

<sup>\*\*</sup> Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água.

Consulte a SMC sobre os tipos resistentes à água com as referências acima \* Símbolos de comprimento do cabo: 0,5 m ........... Nada (Exemplo) M9NW \* Sensores de estado sólido marcados com um símbolo "O" são produzidos após o (Exemplo) M9NWM

(Exemplo) M9NWL

5 m .... (Exemplo) M9NWZ Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1328 e 1329.

3 m

recebimento do pedido.

CY3B CY3R CY1S

CY1L

CY1H CY1F

CYP

D-□

-X□ Technical

1535

<sup>\*</sup> Sensores de estado sólido normalmente fechados (N.F. = contato b) (tipos D-F9G/F9H) também estão disponíveis. Consulte a página 1290 para obter detalhes.

<sup>\*</sup> O sensor magnético é fornecido junto, mas não montado



#### Especificações produzidas sob encomenda

(Para obter detalhes, consulte as páginas 1699 a 1818.)

| Símbolo | Especificações                               |
|---------|----------------------------------------------|
| -XB10   | Curso intermediário (usando corpo exclusivo) |
| -XB11   | Curso longo                                  |

#### **Especificações**

| Diâmetro (mm)                               | 10                     | 15                        | 25                          |  |  |  |  |  |
|---------------------------------------------|------------------------|---------------------------|-----------------------------|--|--|--|--|--|
| Fluido                                      | Ar                     |                           |                             |  |  |  |  |  |
| Lubrificação                                | 1                      | Dispensa lubrificaçã      | 0                           |  |  |  |  |  |
| Ação                                        |                        | Dupla ação                |                             |  |  |  |  |  |
| Pressão máxima de trabalho (MPa)            |                        | 0,7                       |                             |  |  |  |  |  |
| Pressão mínima de trabalho (MPa)            |                        | 0,2                       |                             |  |  |  |  |  |
| Pressão de teste (MPa)                      |                        | 1,05                      |                             |  |  |  |  |  |
| Temperatura ambiente e do fluido (°C)       | -10 a                  | a 60 (sem congelam        | nento)                      |  |  |  |  |  |
| Velocidade do pistão (mm/s)                 |                        | 50 a 500                  |                             |  |  |  |  |  |
| Amortecimento                               | Amorte                 | cedor de impacto in       | itegrado                    |  |  |  |  |  |
| Tolerância de comprimento do curso (mm)     | Curso de 0 a 250: +1,0 | Curso de 251 a 1000: +1,4 | Curso de 1001 adiante: +1,8 |  |  |  |  |  |
| Faixa móvel do ajuste do curso (mm) Nota 1) | -1,2 a 0,8 -1,4 a 0,6  |                           |                             |  |  |  |  |  |
| Tipo de tubulação                           | Т                      | ubulação centraliza       | da                          |  |  |  |  |  |
| Conexão Nota 2)                             | M5 :                   | ¢ 0,8                     | Rc 1/8                      |  |  |  |  |  |

Nota 1) A faixa móvel de ajuste de curso na tabela acima se aplica o parafuso de ajuste padrão. Para obter mais informações, consulte a página 1543.

#### Especificações do amortecedor de impacto

| Diâmetro aplic     | cável (mm)            | 10, 15      | 25          |  |  |  |
|--------------------|-----------------------|-------------|-------------|--|--|--|
| Modelo do amorte   | cedor de impacto      | RB0805-X552 | RB1006-X552 |  |  |  |
| Absorção máx.      | de energia (J)        | 0,98        | 3,92        |  |  |  |
| Amortecimento      | do curso (mm)         | 5           | 6           |  |  |  |
| Velocidade máx. de | impacto (m/s) Nota 1) | 0,05 a 5    |             |  |  |  |
| Frequência máx. de | operação (ciclo/min)  | 80          | 70          |  |  |  |
| Força da           | Quando estendida      | 1,96        | 4,22        |  |  |  |
| mola (N)           | Quando retraída       | 3,83        | 6,18        |  |  |  |
| Peso (g)           | •                     | 15          | 25          |  |  |  |

Nota 1) Representa a energia de absorção máxima por ciclo. Portanto, a frequência de operação pode ser aumentada com a absorção de energia.

#### Curso padrão

| Diâmetro<br>(mm) | Curso padrão (mm)                                     | Curso máximo produzíve (mm) |  |  |
|------------------|-------------------------------------------------------|-----------------------------|--|--|
| 10               | 500                                                   |                             |  |  |
| 15               | 50, 100, 150, 200, 250, 300, 350, 400, 450, 500       | 750                         |  |  |
| 25               | 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600 | 1200                        |  |  |

<sup>\*</sup> O curso está disponível em incrementos de 1 mm com o curso máximo no limite superior. Para um curso na faixa de curso padrão, use o sufixo -XB10 na referência. Se o curso não se enquadrar na faixa de curso padrão, use o sufixo -XB11 na referência.

#### Força de retenção magnética

|                             |      |     | Unidade: N |
|-----------------------------|------|-----|------------|
| Diâmetro (mm)               | 10   | 15  | 25         |
| Força de retenção magnética | 53,9 | 137 | 363        |



Nota 2) Com ø25, os parafusos de tubulação podem ser selecionados pelo cliente. (Consulte "Como pedir").

Nota 2) A vida útil do amortecedor de impacto é diferente daquela do cilindro CY1F, ela depende das condições de operação. Consulte as precauções específicas do produto para saber o período de substituição.

Consulte as especificações de produção sob encomenda nas páginas 1705 e 1711.

#### Saída teórica

|  | Unidade: |                 |     |         |     |     |      |     |  |  |  |  |  |  |
|--|----------|-----------------|-----|---------|-----|-----|------|-----|--|--|--|--|--|--|
|  | Diâmetro | Área do         |     |         |     |     |      |     |  |  |  |  |  |  |
|  | (mm)     | pistão<br>(mm²) | 0,2 | 0,3     | 0,4 | 0,5 | 0,6  | 0,7 |  |  |  |  |  |  |
|  | 10       | 78              | 15  | 23      | 31  | 39  | 46   | 54  |  |  |  |  |  |  |
|  | 15       | <b>15</b> 176   |     | 52      | 70  | 88  | 105  | 123 |  |  |  |  |  |  |
|  | 25       | 490             | 98  | 147     | 196 | 245 | 294  | 343 |  |  |  |  |  |  |
|  |          | · (8.1)         | n ~ | (1.4D.) | á . | ~   | / 21 |     |  |  |  |  |  |  |

Nota) Saída teórica (N) = Pressão (MPa) x Área do pistão (mm²)

#### **Opcionais**

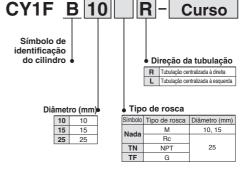
#### Parafuso de ajuste

| Diâmetro (mm) | Parafuso de ajuste padrão | Parafuso de ajuste de 25 mm |
|---------------|---------------------------|-----------------------------|
| 10, 15        | CYF-S10                   | CYF-L10                     |
| 25            | CYF-S25                   | CYF-L25                     |

#### Peso

| CY1 |        |                |                                               |                                      | Unidade: kg                                           |  |  |  |
|-----|--------|----------------|-----------------------------------------------|--------------------------------------|-------------------------------------------------------|--|--|--|
|     | Modelo | Peso<br>básico | Peso adicional<br>para cada 50 mm<br>de curso | Peso do parafuso<br>de ajuste padrão | Peso do parafuso<br>de ajuste para ajuste<br>de 25 mm |  |  |  |
|     | CY1F10 | 0,520          | 0,095                                         | 0,004                                | 0,012                                                 |  |  |  |
|     | CY1F15 | 0,815          | 0,133                                         | 0,004                                | 0,012                                                 |  |  |  |
|     | CY1F25 | 1,970          | 0,262                                         | 0,007                                | 0,021                                                 |  |  |  |

| Método de cálculo<br>Exemplo: CY1F15-150AL                 |                       |
|------------------------------------------------------------|-----------------------|
| Peso básico                                                | 0,815 kg              |
| Peso adicional                                             | 0,133 kg/curso de 50  |
| Peso do parafuso de ajuste padrão                          | 0,004 kg              |
| Peso do parafuso de ajuste para ajuste de 2                |                       |
| $0.815 + 0.133 \times 150 \div 50 + 0.004 + 0.012 = 0.004$ |                       |
| Curso do cilindro                                          |                       |
| Esquerda parafus                                           |                       |
| Direita Para                                               | fuso de ajuste padrão |


#### Peças de reposição

#### Referência do amortecedor de impacto de reposição

| Diâmetro (mm) | Referência do modelo do amortecedor de impacto |
|---------------|------------------------------------------------|
| 10, 15        | RB0805-X552                                    |
| 25            | RB1006-X552                                    |

Nota) Solicite 2 unidades para cada unidade de cilindro.

#### Atuador de reposição (cilindro)

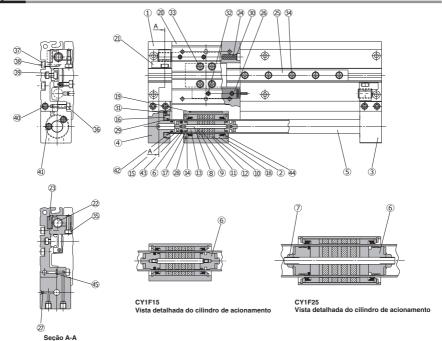


CY3B CY3R CY1S -Z

CY1L CY1H

CY1F

CYP


D-□ -X□

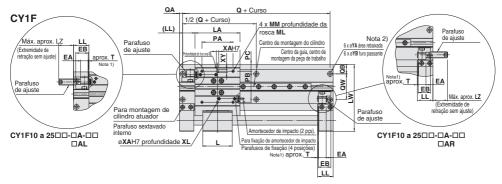
Technical data



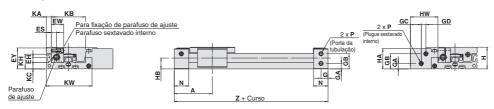
### Série CY1F

#### Construção

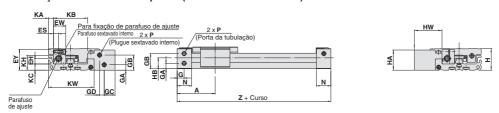



.

#### Lista de peças


| Nº | Descrição                                          | Material              | Nota                 |  |  |  |  |
|----|----------------------------------------------------|-----------------------|----------------------|--|--|--|--|
| 1  | Corpo (cilindro sem haste)                         | Liga de alumínio      | Anodizado            |  |  |  |  |
| 2  | Corpo                                              | Liga de alumínio      | Anodizado duro       |  |  |  |  |
| 3  | Tampa lateral A                                    | Liga de alumínio      | Anodizado duro       |  |  |  |  |
| 4  | Tampa lateral B                                    | Liga de alumínio      | Anodizado duro       |  |  |  |  |
| 5  | Tubo do cilindro                                   | Aço inoxidável        |                      |  |  |  |  |
| 6  | Pistão                                             | Liga de alumínio      | Cromado              |  |  |  |  |
| 7  | Porca do pistão                                    | Aço-carbono           | (Apenas para ø25)    |  |  |  |  |
| 8  | Eixo                                               | Aço inoxidável        |                      |  |  |  |  |
| 9  | Balancim lateral do pistão                         | Placa de aço laminado | Zinco cromado        |  |  |  |  |
| 10 | Balancim lateral do cursor externo                 | Placa de aço laminado | Zinco cromado        |  |  |  |  |
| 11 | Anel magnético A                                   | -                     |                      |  |  |  |  |
| 12 | Anel magnético B                                   | -                     |                      |  |  |  |  |
| 13 | Espaçador do pistão                                | Liga de alumínio      | Cromado              |  |  |  |  |
| 14 | Espaçador                                          | Placa de aço laminado | Revestido com níquel |  |  |  |  |
| 15 | Amortecedor                                        | Borracha de uretano   |                      |  |  |  |  |
| 16 | Anel de conexão                                    | Liga de alumínio      | Anodizado duro       |  |  |  |  |
| 17 | Anel de desgaste A                                 | Resina especial       |                      |  |  |  |  |
| 18 | Anel de desgaste B                                 | Resina especial       |                      |  |  |  |  |
| 19 | Anel de desgaste C                                 | Resina especial       |                      |  |  |  |  |
| 20 | Mesa deslizante                                    | Liga de alumínio      | Anodizado duro       |  |  |  |  |
| 21 | Retentor do ajustador                              | Aço-carbono           | Revestido com níquel |  |  |  |  |
| 22 | Parafuso de ajuste                                 | Aço cromo-molibdênio  | Revestido com níquel |  |  |  |  |
| 23 | Chave de posicionamento<br>do suporte do ajustador | Aço-carbono           | Zinco cromado        |  |  |  |  |
| 24 | Anel magnético                                     | _                     |                      |  |  |  |  |

| Nº | Descrição                  | Material             | Nota                               |
|----|----------------------------|----------------------|------------------------------------|
| 25 | Guia                       | - Iviateriai         | 14014                              |
| 26 | Amortecedor de             | _                    |                                    |
| 27 | impacto                    | Aço de rolamento     |                                    |
| 28 | Esfera de aço              | Aço-carbono          | Revestido de fosfato               |
|    | Anel retentor tipo C       | Fio de aço duro      | (ø15)                              |
| 29 | para orifício              | Aço inoxidável       | (ø10, ø25)                         |
| 30 | Anel retentor              | Aço inoxidável       |                                    |
| 31 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 32 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 33 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 34 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 35 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 36 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 37 | Parafuso sextavado interno | Aço cromo-molibdênio | Revestido com níquel               |
| 38 | Arruela plana              | Aço laminado         | Revestido com níquel               |
| 39 | Porca quadrada             | Aço-carbono          | Revestido com níquel               |
| 40 | Plugue sextavado interno   | Aço cromo-molibdênio | Revestido com níquel               |
| 41 | Plugue sextavado interno   | Aço cromo-molibdênio | Revestido com níquel               |
| 41 | riugue sextavado interno   | Aço cromo-molibuento | (Bujão sextavado interno para ø25) |
| 42 | Gaxeta do tubo do cilindro | NBR                  |                                    |
| 43 | Vedação do pistão          | NBR                  |                                    |
| 44 | Raspador                   | NBR                  |                                    |
| 45 | Gaxeta do corpo            | NBR                  |                                    |
| 45 | (cilindro sem haste)       |                      |                                    |


#### **Dimensões**



#### Tubulação concentrada à direita (CY1F10 a 25□R-□□-□□)



#### Tubulação concentrada à esquerda (CY1F10 a 25□L-□□-□□)



| Modelo | Curso padrão                                |    |    |    | Α        | EA | EB | EH | ES   | EW | EY | G  | GA | GB   | GC   | GD   | н  | HA | HB | HW   |    |
|--------|---------------------------------------------|----|----|----|----------|----|----|----|------|----|----|----|----|------|------|------|----|----|----|------|----|
| CY1F10 | 50,100,150,200,250,300                      |    |    |    | 49       | 10 | 16 | 7  | 6,5  | 16 | 27 | 9  | 7  | 19,5 | 14   | 6    | 28 | 26 | 14 | 35,5 |    |
| CY1F15 | 50,100,150,200,250,300,350,400,450,500      |    |    |    | 52,5     | 10 | 16 | 7  | 6,5  | 16 | 29 | 9  | 8  | 23   | 17   | 9    | 34 | 32 | 17 | 41,5 |    |
| CY1F25 | 100,150,200,250,300,350,400,450,500,550,600 |    |    |    | ,550,600 | 70 | 13 | 17 | 10,5 | 8  | 22 | 40 | 10 | 12   | 33,5 | 22,5 | 12 | 46 | 44 | 23,5 | 55 |
|        |                                             |    |    |    |          |    |    |    |      |    |    |    |    |      |      |      |    |    |    |      |    |
| Modelo | KA                                          | KB | кс | KH | KW       | L  | LA | LL | LW   | LZ | ML | IV | IM | N    | PA   | PB   | PC | Q  | QA | QB   | QW |
|        |                                             |    |    |    |          |    |    |    |      |    |    |    |    |      |      |      |    |    |    |      |    |

| Modelo | KA  | KB | кс | KH | KW   | L  | LA | LL   | LW    | LZ | ML | MM       | N    | PA | PB | PC  | Q   | QA  | QB   | QW |
|--------|-----|----|----|----|------|----|----|------|-------|----|----|----------|------|----|----|-----|-----|-----|------|----|
| CY1F10 | 6,5 | 44 | 8  | 19 | 59   | 38 | 58 | 20   | 86    | 19 | 5  | M3 x 0,5 | 18,5 | 40 | 40 | 8,5 | 90  | 4   | 12   | 33 |
| CY1F15 | 6,5 | 51 | 10 | 19 | 66   | 53 | 65 | 20   | 99    | 19 | 5  | M3 x 0,5 | 18,5 | 50 | 50 | 7   | 97  | 4   | 12   | 40 |
| CY1F25 | 7,5 | 66 | 13 | 27 | 84,5 | 70 | 89 | 25,5 | 128,5 | 17 | 9  | M5 x 0,8 | 24   | 65 | 65 | 8   | 129 | 5,5 | 14,5 | 52 |

|        | _   | XA       | XL | XY  | YA                   | YB  | 7   | Amortecedor  |        | P (Po    | orta da tubula | ção) |
|--------|-----|----------|----|-----|----------------------|-----|-----|--------------|--------|----------|----------------|------|
| Modelo | '   | XA       | XL | ΑY  | YA                   | YB  |     | de impacto   | Modelo | Nada     | TN             |      |
| CY1F10 | 1   | 3 *0,012 | 4  | 4   | 6,5 profundidade 3,4 | 3,4 | 98  | RB0805- X552 | CY1F10 | M5 x 0,8 | _              |      |
| CY1F15 | - 1 | 3*0,012  | 4  | 4   | 6,5 profundidade 3,4 | 3,4 | 105 | RB0805- X552 | CY1F15 | M5 x 0,8 | _              |      |
| CY1F25 | - 1 | 5 *0,012 | 5  | 7,5 | 9,5 profundidade 5,4 | 5,5 | 140 | RB1006- X552 | CY1F25 | Rc 1/8   | NPT 1/8        |      |
|        |     |          |    | ~   |                      |     |     |              | , , ,  |          |                | -    |

Nota 1) Ao ajustar o curso, mantenha a dimensão T dentro da faixa de 0 a 2 mm. No entanto, com o parafuso de ajuste de 25 mm, um intervalo de ajuste de 0 a 26 mm está disponível.

Nota 2) Existem quatro dimensões øYA e øYB com um curso de 50 mm.



1539

TF

G 1/8

CY3B CY3R CY1S -Z

CY1L CY1H

CY1F CYP

011

D-□

-X□

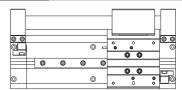
Technical

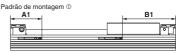
data

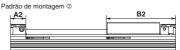
## Série CY1F Montagem do sensor magnético

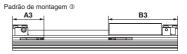
#### Posição adequada de montagem do sensor magnético (detecção no fim do curso)

(mm)


#### D-A9□, D-A9□V Padrão de montagem ① Padrão de montagem ② Padrão de montagem ③ Diâmetro Faixa de Α1 R1 Δ2 R2 Δ3 **B**3 (mm) 38 60 80 9 15 30 66 19 86 86 30 10 25 44,5 95,5 24,5 115,5 44.5 115,5 11


#### D-M9□, D-M9□V, D-M9□W, D-M9□WV D-M9□A, D-M9□AV


| Diâmetro | Padrão de n | nontagem ① | Padrão de m | nontagem ② | Padrão de n | Nota 2)<br>Faixa de |          |
|----------|-------------|------------|-------------|------------|-------------|---------------------|----------|
| (mm)     | A1          | B1         | A2          | B2         | А3          | В3                  | operação |
| 10       | 34          | 64         | 22          | 76         | 34          | 76                  | 5,5      |
| 15       | 35          | 70         | 23          | 82         | 35          | 82                  | 5        |
| 25       | 40,5        | 99,5       | 28,5        | 111,5      | 40,5        | 111,5               | 5        |


Nota 1) Ajuste o sensor magnético depois de confirmar as condições de operação na situação real.

Nota 2) Como a faixa de operação é fornecida como referência incluindo histerese, ela não é garantida. (Supondo aproximadamente ±30% de dispersão.) Pode variar substancialmente, dependendo do ambiente.









#### 

① Ao ajustar o curso, confirme o curso mínimo para montagem do sensor magnético.

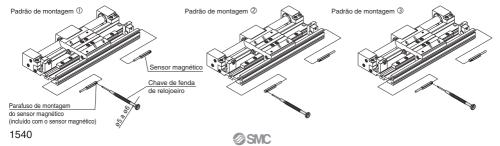
Veja a tabela abaixo para o curso mínimo para montagem do sensor magnético.

#### Curso mínimo para o sensor magnético

Montagem (1 pc.) Curso mínimo para a montagem do sensor magnético (2 pçs.)

| (11111) |  |
|---------|--|
| D-M9□V  |  |
| D-M9□WV |  |
| D-M9□A  |  |
| D-M9□AV |  |
| 20      |  |

| Diâmetro<br>(mm) | D-A9□<br>D-A9□V<br>D-M9□<br>D-M9□V | D-M9□W<br>D-M9□WV<br>D-M9□A<br>D-M9□AV |
|------------------|------------------------------------|----------------------------------------|
| 10               |                                    |                                        |
| 15               | 5                                  | 10                                     |
| 25               |                                    |                                        |


| Diâmetro<br>(mm)        | D-A90<br>D-A96 | D-A93 | D-A90V<br>D-A96V<br>D-A93V | D-M9□<br>D-M9□W | D-M9□V<br>D-M9□WV<br>D-M9□A<br>D-M9□AV |
|-------------------------|----------------|-------|----------------------------|-----------------|----------------------------------------|
| Padrão de montagem 1, 2 | 32             | 35    | 22                         | 32              | 20                                     |
| Padrão de montagem 3    |                | 20    |                            | 1               | 2                                      |
|                         |                |       |                            |                 |                                        |

#### Montagem do sensor magnético

Como mostrado abaixo, existem 3 maneiras de montar o sensor magnético de acordo com 3 tipos de entrada elétrica. Insira o sensor magnético na ranhura do sensor. Em seguida, use uma chave de fenda de relojoeiro de ponta plana para apertar os parafusos de montagem do sensor magnético incluídos.

Nota) Ao apertar um parafuso de montagem do sensor magnético (incluído com o sensor magnético), use uma chave de fenda de relojoeiro com um cabo com diâmetro de cerca de 5 a 6 mm.

| Torque de aperto dos parafusos de montagem do sensor magnético (N · r |                  |  |  |  |  |
|-----------------------------------------------------------------------|------------------|--|--|--|--|
| Modelo do sensor magnético                                            | Torque de aperto |  |  |  |  |
| D-A9□(V)                                                              | 0,10 a 0,20      |  |  |  |  |
| D-M9□(V)<br>D-M9□W(V)<br>D-M9□A(V)                                    | 0,05 a 0,15      |  |  |  |  |





Leia antes do manuseio.

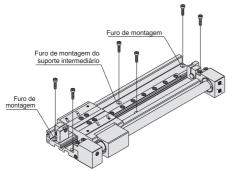
Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precauções com o sensor magnético e o atuador.

#### Montagem

#### 

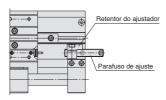
1. Não aplique um grande impacto ou momento excessivo à mesa deslizante (cursor).

Como a mesa deslizante (cursor) é suportada por um rolamento de precisão, não aplique um grande impacto ou momento excessivo ao montar uma peça de trabalho.


2. Alinhe cuidadosamente ao conectar a uma carga com um mecanismo de quia externo.

Embora um cilindro magnético sem haste (Série CY1F) possa receber diretamente uma carga dentro do intervalo admissível da guia, é necessário alinhar suficientemente ao conectar a uma carga com um mecanismo de guia externo.

Quanto mais longo for o curso, maior se tornará o deslocamento do centro do eixo. Portanto, adote um método de conexão (mecanismo flutuante) que possa garantir a absorção do deslocamento.


3. Certifique-se de usar os 4 furos de montagem em ambas as extremidades do corpo da quia ao montar o produto no equipamento.

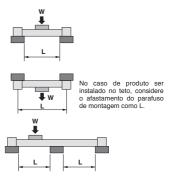
O furo de montagem no centro do corpo da guia é usado para montar um suporte intermediário. Certifique-se de usar os 4 furos de montagem em ambas as extremidades para fixar o produto.



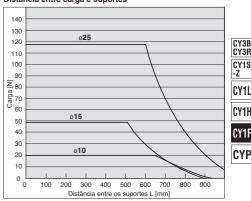
4. Quando um parafuso de ajuste de 25 mm for selecionado, os furos de montagem serão ocultados atrás dele. Ajuste o parafuso de ajuste depois que o cilindro for instalado.

De acordo com "2. Como ajustar o parafuso de ajuste" na página 1543, mova o parafuso de ajuste para uma posição onde ele não interfira em nenhum um dos furos de montagem e fixe o cilindro com parafusos de montagem. Após fixar o cilindro, reajuste o curso com o parafuso de ajuste.




Parafuso de aiuste de 25 mm

#### 


5. A operação do curso longo causa a deflexão da mesa de caminho ou do tubo do cilindro.

Neste caso, forneça um suporte intermediário. Forneça um suporte intermediário com os furos de montagem no centro da mesa de caminho para que a distância entre os suportes dada como L na figura não exceda o valor mostrado no gráfico.

- · Se a superfície do contador for imprecisa, pode resultar em mau funcionamento; por isso, ajuste o nível ao mesmo tempo.
- · Em um ambiente onde ocorre vibração ou impacto, forneça um suporte intermediário mesmo se a distância estiver dentro do intervalo admissível no gráfico.



#### Distância entre carga e suportes



6. Existem limitações de massa da carga e de pressão de trabalho no caso do produto ser usado na direção vertical.

Ao usar o produto na direção vertical, confirme os valores permitidos em "Operação vertical" em Seleção de modelo (1) na página 1532. Se o valor permitido for excedido, o acoplamento magnético pode escorregar, causando a queda da peça de trabalho.



CY1L

CY1H

CY1F

CYP

Technical





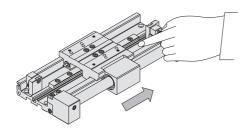
Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precaucões com o sensor magnético e o atuador.

#### Manuseio

#### 

Não mova inadvertidamente a unidade de ajuste da guia.


A guia é instalada no torque de aperto apropriado. Não solte os parafusos de montagem da guia.

 Não opere o cilindro magnético sem haste se os acoplamentos magnéticos no atuador estiverem deslocados.

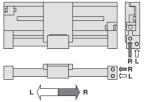
Se os acoplamentos magnéticos forem deslocados por uma força externa além da força de retenção, forneça uma pressão de ar de 0,7 MPa à conexão do cilindro para retornar o cursor externo à posição certa do fim de curso.

 Tome precauções para evitar prender as mãos na unidade.

Cuidado para não prender sua mão entre a mesa deslizante e o suporte ajustador no final do curso. Instale uma tampa protetora ou tome outras medidas para evitar que qualquer parte do corpo humano toque diretamente o local.

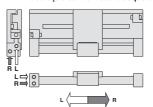


 Nunca desmonte as peças magnéticas (cursor externo, cursor interno) do atuador (cilindro). Isto causará o declínio da força de retenção.


#### Tubulação

#### **∧** Cuidado

 Tenha cuidado com a direção da porta da tubulação e do movimento da mesa deslizante.


A direção da porta da tubulação e do movimento da mesa deslizante difere entre a tubulação centralizada do lado direito e a tubulação centralizada do lado esquerdo.

#### Tubulação centralizada à direita



Direção de acionamento da mesa deslizante

#### Tubulação centralizada à esquerda



Direção de acionamento da mesa deslizante

 A posição do plugue da porta da tubulação pode ser alterada para se adequar às condicões de operação.

Ao parafusar o plugue pela segunda vez, enrole uma fita de vedação em torno do plugue para evitar vazamento.

(1) M

**SMC** 

Primeiro aperte levemente até que a rotação pare. Então aperte mais 1/6 a 1/4 de uma volta.

(2) Rc 1/

Aperte com um torque de 7 a 9 N·m usando ferramentas de aperto.

1542



Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precauções com o sensor magnético e o atuador.

#### Ajuste

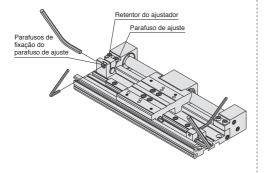
(mm)

#### **∕** Cuidado

#### 1. Intervalo de ajuste de curso

O curso da série CY1F pode ser controlado ajustando o parafuso de ajuste anexado.

de ajuste anexado. Para obter informações sobre a quantidade de ajuste do curso, consulte a tabela abaixo.


| Diâmetro<br>(mm) | Parafuso de<br>ajuste padrão | Parafuso de ajuste de 25 mm |
|------------------|------------------------------|-----------------------------|
| 10               | -1.2 a 0.8                   | -25.2 a 0.8                 |
| 15               | -1,2 d 0,6                   | -20,2 d 0,6                 |
| 25               | -1,4 a 0,6                   | -25,4 a 0,6                 |

Os valores de ajuste acima referem-se a um lado

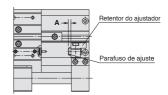
#### 2. Como ajustar o parafuso de ajuste

- 1) Solte os parafusos de fixação do parafuso de ajuste.
- Insira uma chave Allen em um furo sextavado na extremidade do parafuso de ajuste para ajustá-lo.
- Após o ajuste, aperte os parafusos de fixação do parafuso de ajuste.

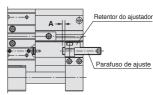
|          | Parafusos de fixação do parafuso de ajuste |               | Largura de ajuste entre as faces |
|----------|--------------------------------------------|---------------|----------------------------------|
| 10<br>15 | МЗ                                         | 1,0 a 1,3 N·m | 4                                |
| 25       | M5                                         | 4,6 a 6,2 N·m | 5                                |



#### 


 Ao ajustar o curso, seja cuidadoso quanto aos limites de pressão de trabalho.

Quando tornar o curso menor do que o curso de referência com o parafuso de ajuste, opere em pressão abaixo do limite da pressão de trabalho em (1) "Parada intermediária por batente externo ou ajuste de curso" na página 1532. Se o limite da pressão de trabalho for excedido, o acoplamento magnético no atuador (cilindro) escorregará.


 Ao ajustar o curso, use a distância entre a extremidade do parafuso de ajuste e a extremidade do retentor do ajustador como referência.

Se a dimensão A for menor do que 0, a mesa deslizante e o retentor ajustador colidirão, resultando em danos à mesa deslizante, tais como riscos e arranhões.

|                  |                                                    |                                                      |              | (mm)                         |
|------------------|----------------------------------------------------|------------------------------------------------------|--------------|------------------------------|
| Diâmetro<br>(mm) | No curso mínimo<br>do parafuso de<br>ajuste padrão | No curso mínimo<br>do parafuso de ajuste<br>de 25 mm | Curso básico | No ajuste de<br>curso máximo |
| 10               | A < 2                                              | A < 26                                               | A = 0,8      |                              |
| 15               | N \ Z                                              | 71 20                                                | 74 = 0,0     | A ≥ 0                        |
| 25               | A < 2                                              | A < 26                                               | A = 0,6      |                              |



#### Parafuso de ajuste padrão



Parafuso de ajuste de 25 mm



CY3B

D
-X

Technical

CYP

**⊘SMC** 



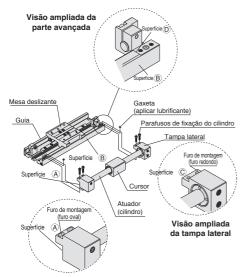
Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precauções com o sensor magnético e o atuador.

#### Manutenção e substituição

#### 

#### Substituição do atuador


 O atuador (cilindro) da série CY1F pode ser substituído.

Consulte "Atuador sobressalente (cilindro)" na página 1537 para saber como pedir.

#### 2. Substituição do atuador (cilindro) da série CY1F.

- Remova os 4 parafusos de fixação do cilindro e remova o atuador da guia.
- Aplique lubrificante às gaxetas conectadas ao atuador sobressalente (cilindro) e substitua as gaxetas instaladas pelas novas.
- 3) Encaixe o cursor do atuador sobressalente na parte rebaixada da mesa deslizante. Alinhe a superfície C (no lado com os furos de montagem redondos) da tampa lateral do atuador sobressalente e a superfície D da parte avançada na guia.
- 4) Na condição descrita em (3), coloque a superfície A e a superfície B em contato próximo uma com a outros. Aperte os 4 parafusos de ajuste do cilindro uniformemente.

| Diâmetro<br>(mm) | Parafuso de fixação<br>do cilindro | Torque de aperto  |  |  |  |
|------------------|------------------------------------|-------------------|--|--|--|
| 10               | M3                                 | 0.55 a 0.72 N·m   |  |  |  |
| 15               | IVIS                               | 0,55 a 0,72 N·III |  |  |  |
| 25               | M5                                 | 2,6 a 3,5 N·m     |  |  |  |



Visão ampliada da tampa lateral

#### 3. Aperte os parafusos de fixação do cilindro.

Aperte os parafusos de fixação do cilindro com firmeza. Se eles se soltarem, podem ocorrer danos ou mau funcionamento. Depois de substituir o atuador, realize um teste antes de utilizar o produto.

#### **∧** Cuidado

#### Substituição do amortecedor de impacto

#### O amortecedor de impacto da série CY1F pode ser substituído.

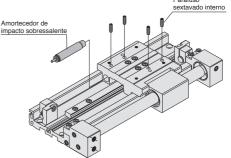
pode ser substituído.

O amortecedor de impacto deve ser substituído como uma peça sobressalente se for observada uma queda da capacidade de absorcão de energia.

Consulte a tabela abaixo sobre como pedir um amortecedor de impacto sobressalente.

| Diâmetro (mm) | Referência  |  |  |  |
|---------------|-------------|--|--|--|
| 10            | RB0805-X552 |  |  |  |
| 15            | HB0805-A552 |  |  |  |
| 25            | RB1006-X552 |  |  |  |

#### 2. Substituição do amortecedor de impacto


Siga os passos abaixo para substituir o amortecedor de impacto.

- Remova a peça de trabalho da mesa deslizante.
- Solte os 4 parafusos sextavados internos no topo da mesa deslizante e remova o amortecedor de impacto.
- Insira o amortecedor de impacto na mesa deslizante até que ele atinja a extremidade traseira e aperte os 4 parafusos sextavados internos.

| Diâmetro<br>(mm) | Parafuso sextavado interno | Torque de aperto |
|------------------|----------------------------|------------------|
| 10               | M3                         | 0,37 a 0,45 N·m  |
| 15               |                            |                  |
| 25               | M5                         | 0,54 a 0,64 N·m  |

#### Tenha cuidado com o torque de aperto dos parafusos sextavados internos.

Tenha cuidado, pois o aperto excessivo pode causar danos ou mau funcionamento do amortecedor de impacto.



Vida útil e período de troca do amortecedor de impacto

#### **⚠** Cuidado

 O ciclo de operação permitido sob as especificações definidas neste catálogo é mostrado a seguir.

1,2 milhão de vezes de RB08□□

2 milhões de vezes de RB10 □□ a RB2725

Nota 1) A vida útil especificada (período de substituição adequado) é o valor à temperatura ambiente (20 a 25 °C). O período pode variar de acordo com a temperatura e outras condições. Em alguns casos, o amortecedor de impacto pode precisar ser substituido antes do cíclo de operação permitido acima.

