

CAT.ES70-50A

Series VXD

Pilot Operated 2 Port Solenoid Valve

Series VXD

Enclosure IP65

Flame resistance UL94V-0 conformed (

Low-noise construction

Metal noise reduced by the rubber bumper

Piping variations

Thread piping, One-touch fitting, Flange piping

Built-in full-wave rectifier type (AC specification: Insulation type Class B/H)

Improved durability Service life is extended by the special construction. (compared with current shading coil)

- Reduced buzz noise Rectified to DC by the full-wave rectifier, resulting in a buzz noise reduction.
- Reduced apparent power (Class B, N.C. valve)
 - 10 VA \rightarrow **7** VA (VXD23 to 25)
 - 20 VA \rightarrow **9.5** VA (VXD26 to 27)
 - 32 VA \rightarrow **12** VA (VXD28 to 29)

Improved OFF response

Specially constructed to improve the OFF response when operated with a higher viscosity fluid such as oil.

Low-noise construction

Specially constructed to reduce the metal noise during operation.

Clearance

By providing a bumper and clearance, we reduced the collision sound of the core when ON (when the valve is open). Because of the clearance, when using highly viscous fluids such as oil, the armature does not get stuck and the responsiveness when OFF (when the valve is closed) is improved.

Power consumption:

4.5 w (VXD23 to 25)

7 W (VXD26 to 27)

10.5 w (VXD28 to 29) **Improved** armature durability

Body material Air

Aluminum (VXD2_A³) Resin (VXD2³_A) C37, Stainless steel (VXD2⁴_B to 2⁶_D) CAC407 (VXD2⁷_F to 2^9_G)

Water/Oil/Heated water/ High temperature oil

C37, Stainless steel (VXD2 $_{A}^{3}$ to 2 $_{D}^{6}$) CAC407 (VXD2 $_{\rm E}^7$ to 2 $_{\rm G}^9$)

		0	Dealer						Port size					
Model	Size Orifice diameter		Body material			Thread			Flange One-touc				e-touch fit	ting
		diameter material		1/4	3/8	1/2	3/4	1	32A	40A	50A	ø10	ø 3/8 "	ø 12
			Aluminum	•			—	_	_	—	_	_	_	—
	8A 10A 15A	10 mmø	Resin	—	—	—	—	—	_	—				
VADZA		15A		C37	0			—	—	—	—		—	—
			Stainless steel				—	—	—	_			—	-
	10A	15 mmø	C37	—			—	—	_	—		_	_	_
VXD2B	15A	15 11110	Stainless steel	_			—	_	_	—		_	_	_
VXD2 ⁵	20A	20 mmø	C37	—	—	—		—	—	—		—	—	-
VXD2C	204	20 111110	Stainless steel	—	—	—		—	—	—			—	—
	25A	25 mmø	C37	_	_	—	—		_	—		_	_	-
VADZD	25A	23 111110	Stainless steel	—	—	—	—		_	—		_	_	—
VXD2 ⁷ _E	32A	35 mmø		_	_	_	_	_		_		_	_	_
VXD2 ⁸ _F	40A	40 mmø	CAC407	—	_	_	_	_	—				_	_
VXD2 ⁹ _G	50A	50 mmø		_	_	_		—	_	—		—	_	—

Pilot Operated 2 Port Solenoid Valve

Series VXD

_	non Specifications2 tion Steps	Specifications
	For Air Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage 4, 5 How to Order	For Air
	For Water Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage 7, 8 How to Order	
	For Oil Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage 10, 11 How to Order	Oil
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	For Heated water Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage 13, 14 How to Order	Heated water
	For High temperature oil Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage 16, 17 How to Order	For High For temperature oil
	Special Options19	
	truction	
	nsions [.] Air/Water/Oil	Suo
-	Body material: Resin	D
	Body material: Aluminum, C37, Stainless steel24	
	Body material: C37, Stainless steel	uction
	Body material: CAC407	Construction
For	Heated water/High temperature oil	
E	Body material: C37, Stainless steel	lsion
E	35 30 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	Dimensions
Repla	acement Parts	
	ary of Terms	
	oid Valve Flow-rate Characteristics	
	rate Characteristics 43	
-	fic Product Precautions 45	
Safet	y InstructionsBack cover	

# Series VXD Common Specifications

### **Standard Specifications**

	Valve construction		Pilot operated 2 port diaphragm type					
	Withstand pressure	e	2.0 MPa (Resin body type 1.5 MPa)					
Valve	Body material		Aluminum, Resin, C37 (Brass), Stainless steel, CAC407 (Bronze casting)					
specifications	Seal material		NBR, FKM, EPDM					
	Enclosure		Dust-tight, Water-jet-proof type (IP65) Note 1)					
	Environment		Location without corrosive or explosive gases					
	Rated voltage	AC	100 VAC, 200 VAC, 110 VAC, 230 VAC, (220 VAC, 240 VAC, 48 VAC, 24 VAC) Note 2)					
	naleu voltage	DC	24 VDC, (12 VDC) Note 2)					
Coil	Allowable voltage	fluctuation	±10% of rated voltage					
specifications	Allowable leakage	AC	10% or less of rated voltage					
	voltage	DC	2% or less of rated voltage					
	Coil insulation type	•	Class B, Class H					

Note 1) Electrical entry "Faston" type terminal is IP40.

Note 2) Voltage in ( ) indicates special voltage. (Refer to page 19.)

▲ Be sure to read "Specific Product Precautions" before handling.

### **Solenoid Coil Specifications**

### Normally Closed (N.C.) DC Specification

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)		
VXD23 to 25	4.5	50		
VXD26, 27	7	55		
VXD28, 29	10.5	65		

### Normally Open (N.O.) DC Specification

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD2A to 2C	7.5	60
VXD2D, 2E	8.5	70
VXD2F, 2G	12.5	70

Note 1) Power consumption, Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%) Note 2) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

#### AC Specification (Built-in Full-wave Rectifier Type) Class B

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)		
VXD23 to 25	7	60		
VXD26, 27	9.5	70		
VXD28, 29	12	70		

#### Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)		
VXD23 to 25	9	100		
VXD26, 27	12	100		
VXD28, 29	15	100		

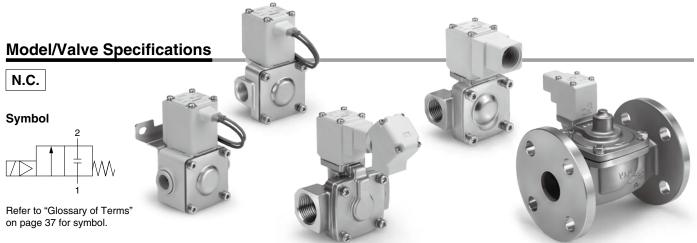
#### AC Specification (Built-in Full-wave Rectifier Type) Class B

Model	Apparent power (VA)	Temperature rise (°C)		
VXD2A to 2C	9	60		
VXD2D, 2E	10	70		
VXD2F, 2G	14	70		

### Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)						
VXD2A to 2C	9	100						
VXD2D, 2E	12	100						
VXD2F, 2G	15	100						

Note 1) Power consumption, Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)


Note 2) There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC.

Note 3) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

# Series VXD Selection Steps

Item		Selection	item	Page		Symbo		
		Air		Page 4		0		
		Water		Page 7		2		
Select the fluid.		Oil	6	Page 10		3	0	VXD2 3 0 A
		Heated water	\$\$ } }	Page 13		5		0
		High temperature oil	S.	Page 16		6		
Select from "Flow rate — Pressure."		Valve ty		N.C.	-	3	0	• •
Item		Selection	ı item			Symbo	I	1
Salact from "Elow		Size		8A	-	3	2	
rate — Pressure." • Body material	_			Aluminum	+	-	-	
<ul> <li>Port size</li> <li>Orifice diameter</li> </ul>		<ul> <li>Body material</li> <li>Port size</li> </ul>	1/4		A	6		
		Orifice dia	-	10				
L					L			
Select electrical spe	ecifica	ation. Selection	ı item			Symbo	ł	
- Select electrical		Voltag	ge	24 VDC				
specification.		Electrical	entry	Grommet		A	4	
For other special or	otions	, refer to	page	e 19.	L			





### Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Minimum operating	Maximum operating	pressure differential		Flow-rate	e characte	ristics	Maximum system	Weight			
material	Port size	(mmø)	woder	pressure differential Note 1) (MPa)	AC	DC	С	b	Cv	Effective area (mm ² )	pressure (MPa)	(g)			
	1/4 (8A)						8.5		2.0			370			
Aluminum	3/8 (10A)						9.2	0.35	2.4		-	370			
	1/2 (15A)	10	VXD230		0.9	0.7	9.2	2.4	2.4			370			
	ø10	10	10	10		VAD230		0.5	0.7	5.6	0.33	1.3		[	330
Resin	ø3/8"			0.02			4.8	0.33	0.9			330			
	ø12				0.02	0.02	0.02			7.2	0.33	1.5		1.5	330
	3/8 (10A)	15	15	15		VXD240				18.0	0.35 5.	5.0			720
Stainless	1/2 (15A)	15	VAD240				20.0	0.55	5.5			720			
steel, C37	3/4 (20A)	20	VXD250							38.0	0.30	9.5			840
	1 (25A)	25	VXD260		1.0	1.0				225		1360			
	32A Flange	35	VXD270							415		5400			
CAC407	40A Flange	40	VXD280	0.03				—		560	I I	6800			
	50A Flange	50	VXD290							880		8400			

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.
Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

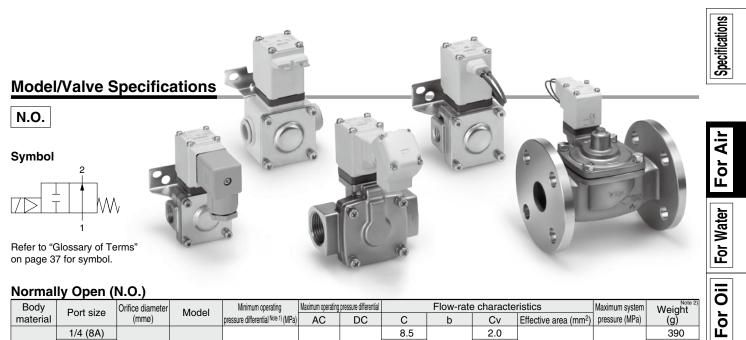
### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

### Valve Leakage

#### Internal Leakage


	Leakage rate (Air) Note 1)				
Seal material	VXD23 to 26	VXD27 to 29			
	(8A to 25A)	(32A to 50A)			
	15 cm ³ /min or less (Aluminum body type)				
NBR (FKM) Note 2)	15 cm ³ /min or less (Resin body type)	10 cm ³ /min or less			
	2 cm ³ /min or less (Metal body type)				

#### **External Leakage**

	Leakage rate (Air) Note 1)				
Seal material	VXD23 to 26	VXD27 to 29			
	(8A to 25A)	(32A to 50A)			
NBR (FKM) Note 2)	15 cm ³ /min or less (Aluminum body type)				
	15 cm ³ /min or less (Resin body type)	1 cm ³ /min or less			
	1 cm ³ /min or less (Metal body type)				

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 19 for the selection.



### Normally Open (N.O.)

	Body D Orifice diameter Minimum coerating Maximum coerating pressue differential Flow-rate characteristics Maximum system Weight											
Body	Port size	Orifice diameter			· · ·	pressure differential		Flow-rate	e characte		Maximum system	Weight
material	1 011 0120	(mmø)	Model	pressure differential Note 1) (MPa)	AC	DC	С	b	Cv	Effective area (mm ² )	pressure (MPa)	(g)
	1/4 (8A)						8.5		2.0			390
Aluminum	3/8 (10A)						9.2	0.35	2.4			390
	1/2 (15A)	10	VXD2A0		0.6	0.4	9.2		2.4			390
	ø10	10	VADZAU		0.0	0.4	5.6		1.3			350
Resin	ø3/8"			0.02			4.8	0.33	0.9			350
	ø12	ø12		0.02			7.2		1.5			350
	3/8 (10A)	15		15 VXD2B0			18.0	0.35	5.0		1.5	740
Stainless	1/2 (15A)	15	VADZDU				20.0	0.35	5.5			740
steel, C37	3/4 (20A)	20	VXD2C0				38.0	0.30	9.5			860
	1 (25A)	25	VXD2D0		0.7	0.7				225		1390
	32A Flange	35	VXD2E0							415		5430
CAC407	40A Flange	40	VXD2F0	0.03						560		6840
	50A Flange	50	VXD2G0							880		8440

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.
Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

### Valve Leakage

#### Internal Leakage

	Leakage rate (Air) Note 1)				
Seal material	VXD2A to 2D	VXD2E to 2G			
	(8A to 25A)	(32A to 50A)			
NBR (FKM) Note 2)	15 cm ³ /min or less (Aluminum body type)				
	15 cm ³ /min or less (Resin body type)	10 cm ³ /min or less			
	2 cm ³ /min or less (Metal body type)				

#### **External Leakage**

		Leakage rate (Air) Note 1)				
	Seal material	VXD2A to 2D	VXD2E to 2G			
		(8A to 25A)	(32A to 50A)			
	NBR (FKM) Note 2)	15 cm ³ /min or less (Aluminum body type)				
		15 cm ³ /min or less (Resin body type)	1 cm ³ /min or less			
		1 cm ³ /min or less (Metal body type)				

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 19 for the selection.

### **SMC**

For Heated water

For High temperature oil

Dimensions Construction Dimensions

### How to Order

VXD2 3 0 A A

Fluid

Air

0



Common	Specifications

Seal material	NBR				
Coil insulation type	Class B				
Thread type	Rc*				
When the body is resin, one-touch fittings are supplied. For body size 32A or more, the ports will be the flange type.					

#### ♦ Voltage/Electrical entry

• Size	-Valve	type	• Bod	ly materia	al/Port size/Orifice d	iameter	
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter	
			Α		1/4		
3	8A	N.C.	В	Aluminum	3/8		
	- 10A		С		1/2	10	
	15A		D		ø10 One-touch fitting	10	
A	IJA	N.O.	E	Resin	ø3/8" One-touch fitting		
			F		ø12 One-touch fitting		
			G		3/8		
4	10A	N.C.	н	C37	1/2	1	
	15A		J	Stainless	3/8	15	
В		N.O.	K	steel	1/2		
E		N.C.		C37			
5 C	20A	N.C. N.O.	M	Stainless steel	3/4	20	
		N.U.	IVI	Starriess steer			
6	054	N.C.	N	C37	1	25	
D	25A	N.O.	Р	Stainless steel	I	25	
7		N.C.					
E	32A	N.O.	Q	CAC407	32A Flange	35	
8	40A	N.C.	B	CAC407	40A Flange	40	
F		N.O.					
9		N.C.					
G	50A	N.O.	S	CAC407	50A Flange	50	
		1					

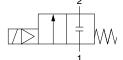
Symbol	Voltage	Electrical entry
A	24 VDC	Grommet
В	100 VAC	Grommet
С	110 VAC	With surge voltage
D	200 VAC	\suppressor/
Е	230 VAC	
F	24 VDC	
G	24 VDC	DIN terminal
н	100 VAC	With surge voltage
J	110 VAC	suppressor
к	200 VAC	
L	230 VAC	
М	24 VDC	
Ν	100 VAC	With surge voltage
Р	110 VAC	\suppressor
Q	200 VAC	
R	230 VAC	alt
S	24 VDC	Conduit
Т	100 VAC	With surge voltage
U	110 VAC	\suppressor
v	200 VAC	
W	230 VAC	DL-
Y	24 VDC	Faston terminal
Z		Other special options

### For other special options, refer to page 19.

24 VAC					
48 VAC					
220 VAC					
240 VAC					
12 VDC					
ht					
h light					
Without DIN connector					
esistant (Seal material: FKM)					
With bracket					

Dimensions  $\rightarrow$  Page on and after 22 (Single Unit)






Possible to use this for air. Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications for air.

### Model/Valve Specifications



#### Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

### Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Minimum operating	Maximum operating	pressure differential	Flow-rate ch	aracteristics	Maximum system	Weight ^{Note 2)}	
material	1 011 3126	(mmø)	Woder	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)	
	1/4 (8A)						46	1.9		480	
	3/8 (10A)	10	VXD232		0.7	0.5	58	2.4		480	
Stainless	1/2 (15A)						58	2.4		480	
steel, C37		15	VXD242	VXD242	0.02		-	110	4.5		720
31661, 007	1/2 (15A)	15			VAD242			130	5.5	1.5	720
	3/4 (20A)	20	VXD252				230	9.5	1.5	840	
	1 (25A)	25	VXD262		1.0	1.0	310	13		1360	
	32A Flange	35	VXD272				550	23		5400	
CAC407	40A Flange	40	VXD282	0.03			740	31		6800	
	50A Flange	50	VXD292				1200	49		8400	

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum

system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 60 Note)	-20 to 60

Note) No freezing

### Valve Leakage

#### **Internal Leakage**

Seal material	Leakage rate (Water) Note 1)						
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)					
NBR (FKM) Note 2)	0.2 cm ³ /min or less	1 cm ³ /min or less					
External Lea	external Leakage						
Seal material	Leakage rate	(Water) Note 1)					
Searmateria	VYDOOL OO (OLL OTA) VYDOTL OO (OLL)						

 VXD23 to 26 (8A to 25A)
 VXD27 to 29 (32A to 50A)

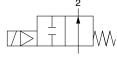
 NBR (FKM) Note 2)
 0.1 cm³/min or less
 0.1 cm³/min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 19 for the selection.

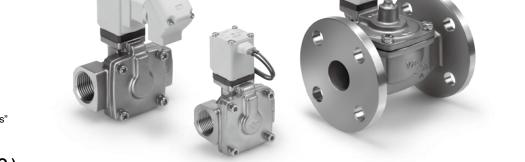


Specifications


Ā

For

### Model/Valve Specifications








Refer to "Glossary of Terms" on page 37 for symbol.

### Normally Open (N.O.)



Body	Port size	Orifice diameter	Model	Minimum operating	nimum operating Maximum operating pressure differential		Flow-rate characteristics		Maximum system	Weight ^{Note 2)}	
material	1 011 5120	(mmø)	Model	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)	
	1/4 (8A)					0.3	46	1.9		500	
	3/8 (10A)	10	VXD2A2		0.4		58	2.4		500	
Stainless	1/2 (15A)						58	2.4		500	
steel, C37		15	VXD2B2	0.02			110	4.5		740	
31001,007	1/2 (15A)	15	VADZDZ					130	5.5	1.5	740
	3/4 (20A)	20	VXD2C2				230	9.5	1.5	860	
	1 (25A)	25	VXD2D2		0.7	0.7	310	13		1390	
	32A Flange	35	VXD2E2	0.03			550	23		5430	
CAC407	40A Flange	40	VXD2F2		0.03		740	31		6840	
	50A Flange	50	VXD2G2				1200	49		8440	

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Ambient temperature (°C)

-20 to 60

Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)

1 to 60 Note)

Note) No freezing

|--|

### Internal Leakage

Seal material	Leakage rate	(Water) Note 1)
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
NBR (FKM) Note 2)	0.2 cm ³ /min or less	1 cm ³ /min or less

#### **External Leakage**

Seal material	Leakage rate	
Searmateria	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
NBR (FKM) Note 2)	0.1 cm ³ /min or less	0.1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 19 for the selection.

# Pilot Operated 2 Port Solenoid Valve Series VXD

Α



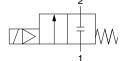
				V	XD2	<u>3</u> <u>2</u> <u>4</u>
					2	Fluid • Water
• Size	-Valve	type	• Bod	y material	/Port size/Orif	ice diameter
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter
			Α		1/4	
3	8A	N.C.	В	C37	3/8	
	10A		С		1/2	10
	15A		D	Stainless	1/4	10
Α	A 10/1	N.O.	E	steel	3/8	
			F		1/2	
4		N.C.	G	C37	3/8	
4	10A	N.C.	Н	037	1/2	15
в	15A	N.O.	J	Stainless	3/8	] 15
D		N.O.	К	steel	1/2	
5		N.C.	L	C37		
C	20A	N.O.	M	Stainless steel	3/4	20
6		N.C.	N	C37		
D	25A	N.O.	Р	Stainless steel	1	25
7		N.C.				
E	32A	N.O.	Q	CAC407	32A Flange	35
8	40A	N.C.	В	CAC407	40A Flange	40
F	10/1	N.O.		5, 10 107	.o, triange	
9	50A	N.C.	s	CAC407	504 Elanga	50
G	JUA	N.O.	3	CAC407	50A Flange	50

		• • -	
<b>A</b>		Common Specifications         Seal material       NBR         Coil insulation type       Class B         Thread type       Rc*         * For body size 32A or more, the ports will be the flange type.	Specifications
	age/Electri		Ĺ
Symbol	Voltage	Electrical entry	Z Z
A	24 VDC	Grommet	Vater For
В	100 VAC	Grommet	For \
С	110 VAC	With surge voltage	ЦĹ,
D	200 VAC	\suppressor	Ξ
Е	230 VAC		<b>O</b>
F	24 VDC		For
G	24 VDC	DIN terminal	
н	100 VAC	With surge voltage	ater
J	110 VAC	\suppressor	ted w
К	200 VAC		or Hea
L	230 VAC		Ъ
М	24 VDC	Conduit terminal	lo
Ν	100 VAC	With surge voltage	High
Р	110 VAC	\suppressor	For Hi
Q	200 VAC		<u>a</u>
R	230 VAC	e e e	
S	24 VDC	Conduit	
Т	100 VAC	With surge voltage	Su
U	110 VAC	\suppressor	
V	200 VAC		d
W	230 VAC	₩ <i>₽</i>	
Y	24 VDC	Faston terminal	Construction
Z	Othe	r voltages and electrical option	Suc
		r other special options, refer to ge 19. 24 VAC	Dimensic
	1		L

page 19.					
	24 VAC				
	48 VAC				
Special voltage	220 VAC				
	240 VAC				
	12 VDC				
DIN terminal with light					
Conduit terminal with light					
Without DIN connector					
Applicable to deionized water (Seal material: FKM)					
Oil-free					
G thread					
NPT thread					
With bracket					
L					



Possible to use this for air and water. Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications of the fluid used.


### ▲ When the fluid is oil. –

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

### **Model/Valve Specifications**

### N.C.

#### Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

### Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Minimum operating	Maximum operating	pressure differential	Flow-rate ch	aracteristics	Maximum system	Weight ^{Note 2)}
material	1 011 3126	(mmø)	Woder	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)					0.4	46	1.9		480
	3/8 (10A)	10	VXD233		0.5		58	2.4	1.5	480
Stainless	1/2 (15A)						58	2.4		480
steel, C37		15	VXD243	0.02			110	4.5		720
31001,007	1/2 (15A)	15	VADZ43				130	5.5		720
	3/4 (20A)	20	VXD253				230	9.5	1.5	840
	1 (25A)	25	VXD263		0.7	0.7	310	13		1360
	32A Flange	35	VXD273				550	23		5400
CAC407	40A Flange	40	VXD283	0.03	0.03		740	31		6800
	50A Flange	50	VXD293				1200	49		8400

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 ^{Note)} to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

### Valve Leakage

#### Internal Leakage

Seal material	Leakage rate (Oil) Note)					
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less				

#### **External Leakage**

Seal material		te (Oil) Note)			
Searmateriar	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)			
FKM	0.1 cm ³ /min or less	0.1cm ³ /min or less			
Note) Lookago is the value at ambient temperature 20°C					

Note) Leakage is the value at ambient temperature 20°C.

### Pilot Operated 2 Port Solenoid Valve Series VXD



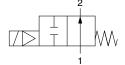
Specifications

For Ail

For Water

For Oil

For Heated water


### $\underline{\wedge}$ When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

### **Model/Valve Specifications**



### Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

### Normally Open (N O )

Body	Port size	Orifice diameter	Model Minimum operating		Maximum operating	pressure differential	Flow-rate ch	aracteristics	Maximum system	Weight ^{Note 2)}				
material	1 011 3126	(mmø)	Woder	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)				
	1/4 (8A)						46	1.9		500				
	3/8 (10A)	10	VXD2A3		0.4	0.3	58	2.4		500				
Stainless	1/2 (15A)						58	2.4		500				
steel, C37	3/8 (10A)	15	VXD2B3	0.02			110	4.5		740				
	1/2 (15A)	15	VADZDJ									130	5.5	1.5
	3/4 (20A)	20	VXD2C3				230	9.5	1.5	860				
	1 (25A)	25	VXD2D3		0.6	0.6	310	13	] [	1390				
	32A Flange	35	VXD2E3				550	23		5430				
CAC407	40A Flange	40	VXD2F3	0.03	0.03			740	31		6840			
	50A Flange	50	VXD2G3				1200	49		8440				

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum

system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 ^{Note)} to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

### Valve Leakage

### Internal Leakage

Seal material	Leakage rate (Oil) Note)						
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)					
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less					
External Leakage							
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)					
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less					
Note) Leakage is the value at ambient temperature 20°C.							

Note) Leakage is the value at ambient temperature 20



### How to Order



					V	XD2 [	33A	<b>A</b>
						3	Fluid ● Oil	
Size-	-Valve	type		•Bod	y material/	Port size/Ori	fice diameter	۰v
Symbol	Size	Valve type		Symbol	Body material	Port size	Orifice diameter	Syr
				Α		1/4		
3	8A	N.C.		В	C37	3/8		
	10A			С		1/2	10	
	15A			D	Stainless	1/4		
Α	10/1	N.O.		E	steel	3/8		
				F		1/2		E
				G	0.07	3/8		C
4	10A	N.C.		н	C37	1/2		
в	15A	NO		J	Stainless	3/8	15	E
Р		N.O.		Κ	steel	1/2		
5		N.C.		L	C37			F
C	20A	N.O.		M	Stainless steel	3/4	20	(
-		-						ŀ
6	25A	N.C.		N	C37	1	25	
D		N.O.		Р	Stainless steel			ŀ
7	004	N.C.		•	040407		05	
Е	32A	N.O.		Q	CAC407	32A Flange	35	
8		N.C.						Ν
F	40A	N.O.		R	CAC407	40A Flange	40	N
-				L				F
9	50A	N.C.		s	CAC407	50A Flange	50	C
G		N.O.		_				F

Common Specifications				
Seal material	FKM			
Coil insulation type	Class B			
Thread type	Rc*			
<ul> <li>For body size 32A the ports will be th</li> </ul>				

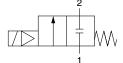
#### type. Voltage/Electrical entry Symbol Voltage Electrical entry Grommet Α 24 VDC Grommet в 100 VAC With surge С 110 VAC voltage \suppressor, D 200 VAC Е 230 VAC F 24 VDC **DIN** terminal G 24 VDC With surge Н 100 VAC voltage \suppressor, J 110 VAC Κ 200 VAC L 230 VAC Conduit terminal М 24 VDC /With surge Ν 100 VAC voltage suppressor Ρ 110 VAC Q 200 VAC R 230 VAC S Conduit 24 VDC With surge т 100 VAC voltage suppressor U 110 VAC v 200 VAC w 230 VAC Faston terminal Υ 24 VDC Ζ Other voltages and electrical option

### For other special options, refer to page 19.

	24 VAC					
Special voltage	48 VAC					
	220 VAC					
	240 VAC					
	12 VDC					
DIN terminal with light						
Conduit terminal with light						
Without DIN connect	ctor					
Oil-free						
G thread						
NPT thread	NPT thread					
With bracket						

Dimensions  $\rightarrow$  Page on and after 24 (Single Unit)




# For Heated water

Possible to use this for air (to 99°C) and water. Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications of the fluid used.

### Model/Valve Specifications



Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

### Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Minimum operating	Minimum operating Maximum operating pressure differential			Flow-rate characteristics		Weight ^{Note 2)}
material	1 011 3126	(mmø)	Woder	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)						46	1.9		480
	3/8 (10A)	10	VXD235		0.7	0.5	58	2.4		480
Stainless	1/2 (15A)						58	2.4	1.5	480
steel, C37	3/8 (10A)	15		XD245 0.02 XD255			110	4.5		720
	1/2 (15A)	15	VAD245				130	5.5		720
	3/4 (20A)	20	VXD255				230	9.5		840
	1 (25A)	25	VXD265		1.0	1.0	310	13	] [	1360
	32A Flange	35	VXD275				550	23		5400
CAC407	40A Flange	40	VXD285	0.03			740	31		6800
	50A Flange	50	VXD295				1200	49		8400

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

Note) No freezing

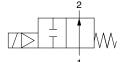
### Valve Leakage

Internal Leakage						
	Leakage rate (Water) Note)					
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
EPDM	0.2 cm ³ /min or less 1 cm ³ /min or less					
External	Leakage					
Seal material	Leakage rate (Water) Note)					
Sear material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
EPDM	0.1 cm ³ /min or less 0.1 cm ³ /min or less					
Note) Leakage is the value at ambient temperature 20°C						

Note) Leakage is the value at ambient temperature 20°C.

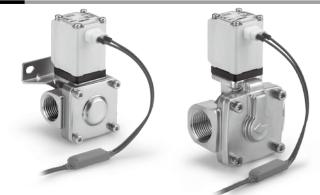


For Ail


Dimensions Construction Options

### Series VXD For Heated water

### **Model/Valve Specifications**




Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

### Normally Open (N.O.)



Body	Port size	Orifice diameter	Model	Minimum operating	Maximum operating	pressure differential	Flow-rate ch	aracteristics	Maximum system	Weight ^{Note 2)}		
material	1 011 5126	(mmø)	Model	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)		
	1/4 (8A)						46	1.9		500		
	3/8 (10A)	10	VXD2A5		0.4	0.3	58	2.4		500		
Stainless	1/2 (15A)						58	2.4		500		
steel, C37	3/8 (10A)	15	VXD2B5		0.02			110	4.5		740	
	1/2 (15A)	15	VAD2D3					130	5.5	1.5	740	
	3/4 (20A)	20	VXD2C5				230	9.5	1.5	860		
	1 (25A)	25	VXD2D5		0.7	0.7	310	13		1390		
	32A Flange	35	VXD2E5				550	23		5430		
CAC407	40A Flange	40	VXD2F5	0.03	0.03	<b>XD2F5</b> 0.03			740	31		6840
	50A Flange	50	VXD2G5				1200	49		8440		

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.
Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)					
1 to 99	-20 to 60					
Note) No freezing						

### Valve Leakage

#### Internal Leakage

Seal material	Leakage rate (Water) Note)				
	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)			
EPDM	0.2 cm ³ /min or less	1 cm ³ /min or less			

### External Leakage

Cool motorial	Leakage rate (Water) Note)				
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)			
EPDM 0.1 cm ³ /min or less 0.1 cm ³ /min or less					
Note) Lookago is the value at ambient temperature 20°C					

Note) Leakage is the value at ambient temperature 20°C.

### Pilot Operatded 2 Port Solenoid Valve Series VXD

For Heated water

**Common Specifications** 

Coil insulation type Class H

Seal material

Thread type



Specifications

EPDM

Rc*

How to Order

					V	<b>XD2</b> [	3 <u>5</u> A	<b>B</b>
Size	—Valve	type		Bod	v material		Fluid • ed water fice diameter	•v
Symbol	Size	Valve type		Symbol	Body	Port size	Orifice diameter	Syr
3	8A 10A	N.C.		A B C	C37	1/4 3/8 1/2	- 10	i (
A	15A	N.O.		D E F	Stainless steel	1/4 3/8 1/2		1
4	10A	N.C.		G H	C37	3/8 1/2	- 15	1
В	15A	N.O.	]	J K	Stainless steel	3/8 1/2		C F
5 C	20A	N.C. N.O.	]	L	C37 Stainless steel	3/4	20	
6 D	25A	N.C. N.O.	]	N P	C37 Stainless steel	1	25	`
7 E	32A	N.C. N.O.	]	Q	CAC407	32A Flange	35	V 2
8 F	40A	N.C. N.O.	]	R	CAC407	40A Flange	40	* D a
9 G	50A	N.C. N.O.	]	S	CAC407	50A Flange	50	

	•	cal entry	₽			
Symbol	Voltage	Electrical entry	For Ai			
В	100 VAC	Grommet				
С	<b>C</b> 110 VAC	voltage	er			
D	200 VAC	\suppressor/	Wat			
Е	230 VAC	000	For Water			
Ν	100 VAC	Conduit terminal	H			
P 110 VAC	110 VAC	voltage				
Q	200 VAC	\suppressor/	For Oi			
R	230 VAC		Ľ			
т	100 VAC	Conduit /With surge \	er			
U	110 VAC	voltage	For Heated water			
v	200 VAC	\suppressor/	r Heat			
w	230 VAC		R			
Z Other voltages and electrical option						

For other special options, refer to page 19.

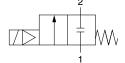
	24 VAC	
Special voltage	48 VAC	
Special voltage	220 VAC	S
	240 VAC	ΠP
Conduit terminal wi	th light	ptions
Oil-free		١ŏ
G thread		
NPT thread		U U
With bracket		struction
		비

```
Dimensions \rightarrow Page on and after 32 (Single Unit)
```



# For High temperature oil

Possible to use this for air (to 99°C) and water. Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications of the fluid used.


### <u>∧</u>When the fluid is oil. –

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

### Model/Valve Specifications

### N.C.

Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

#### Normally Closed (N.C.)

1 O I II a	ny cioseu	(								
Body	Port size	Orifice diameter	Model	Minimum operating	Maximum operating	pressure differential	Flow-rate ch	aracteristics	Maximum system	Weight ^{Note 2)}
material	1 011 3126	(mmø)	Woder	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)						46	1.9		480
	3/8 (10A)	10	VXD236	0.5	0.4	58	2.4	-	480	
Stainless	1/2 (15A)					58	2.4		480	
steel, C37	3/8 (10A)	15	VXD246				110	4.5	1.5	720
	1/2 (15A)	15					130	5.5		720
	3/4 (20A)	20	VXD256				230	9.5	1.5	840
	1 (25A)	25	VXD266		0.7	0.7	310	13		1360
	32A Flange	35	VXD276				550	23		5400
CAC407	40A Flange	40	VXD286	0.03			740	31	] [	6800
	50A Flange	50	VXD296				1200	49		8400

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 ^{Note)} to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

### Valve Leakage

#### Internal Leakage

Seal material	Leakage rate (Oil) Note)				
	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)			
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less			

#### **External Leakage**

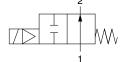
Seal material	Leakage rate (Oil) Note)					
Sear material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
FKM	0.1 cm ³ /min or less 0.1 cm ³ /min or less					
Netes) Le che se la the coche et combiend tende antime 2000						

Note) Leakage is the value at ambient temperature 20°C.



### Pilot Operated 2 Port Solenoid Valve Series VXD

For High temperature oil


### **∧** When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

### **Model/Valve Specifications**



#### Symbol



Refer to "Glossary of Terms" on page 37 for symbol.

Normal	lly Open (l	N.O.)								
Body	Port size	Orifice diameter	Model	Minimum operating	Maximum operating	g pressure differential	Flow-rate ch	haracteristics	Maximum system	Weight ^{Note 2)}
material	T OIT SIZE	(mmø)	widdei	pressure differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ² )	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)				1	1	46	1.9		500
	3/8 (10A)	10	VXD2A6	/	0.4	0.3	58	2.4		500
Stainless	1/2 (15A)	/	(/	'	L'	<u> </u>	58	2.4	ļ	500
steel, C37	3/8 (10A)	15	VXD2B6	0.02	1 '	· [ · · · · · · · · · · · · · · · · · ·	110	4.5		740
	1/2 (15A)	15	VAD200		1	1	130	5.5	1.5	740
	3/4 (20A)	20	VXD2C6	!	1	1	230	9.5	1.5	860
	1 (25A)	25	VXD2D6	<u> </u> '	0.6	0.6	310	13		1390
	32A Flange	35	VXD2E6	'	1	1	550	23		5430
CAC407	40A Flange	40	VXD2F6	0.03	1	1	740	31		6840
	50A Flange	50	VXD2G6	<u> </u> '	L'	<u> </u>	1200	49		8440

Note 1) Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 37 for details on minimum operating pressure differential, the maximum operating pressure differential, maximum system pressure.

### **Fluid and Ambient Temperature**

Fluid temperature (°C)	Ambient temperature (°C)
-5 ^{Note)} to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

### Valve Leakage

Internal Leakage							
	Leakage rate (Oil) Note)						
Seal material VXD2A to 2D (8A to 25A) VXD2E to 2G (32A to 50A							
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less					
External	V						
Seal material		te (Oil) Note)					
Searmateriar	VXD2A to 2D (8A to 25A) VXD2E to 2G (32A to 50						
FKM	0.1 cm ³ /min or less 0.1 cm ³ /min or less						
Note) Leakage is the value at ambient temperature 20°C.							

Specifications

For Air

For Water

**多SMC** 

For High temperature oil

### How to Order

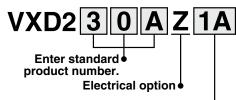


<b></b>				V	<b>XD2</b>	<u>3</u> 6A	<b>B</b>
			<b></b>		6 High tempe	Fluid ♦ rature oil	
Size-	–Valve	type	Bod	v material/	Port size/Ori	fice diameter	ψ
Symbol	Size	Valve type	Symbol	Body	Port size	Orifice diameter	Syn
			Α		1/4		E
3	8A	N.C.	В	C37	3/8		
	0A 10A		С		1/2	10	0
	15A		D	Otalialaaa	1/4		C
Α	154	N.O.	E	Stainless steel	3/8		E
			F		1/2		
			G	007	3/8		
4	10A	N.C.	н	C37	1/2	15	F
в	15A	N.O.	J	Stainless	3/8	15	0
D		N.O.	K	steel	1/2		F
5		N.C.	L	C37			
С	20A	N.O.	М	Stainless steel	3/4	20	
6		N.C.	N	C37			
D	25A	N.O.	P	Stainless steel	1	25	\ \
_							v
7	32A	N.C.	Q	CAC407	32A Flange	35	Z
Е		N.O.					
8	40A	N.C.	R	CAC407	40A Flange	40	* D av
F		N.O.					
9	50A	N.C.	s	CAC407	50A Flange	50	
G		N.O.					

Seal material	FKM
Coil insulation t	type Class H
Thread type	Rc*

### • Voltage/Electrical entry

Symbol	Voltage	Electrical entry
В	100 VAC	Grommet
С	110 VAC	With surge voltage
D	200 VAC	\suppressor/
Е	230 VAC	of the
N	100 VAC	Conduit terminal
Р	110 VAC	voltage
Q	200 VAC	\suppressor/
R	230 VAC	
Т	100 VAC	
U	110 VAC	With surge voltage
v	200 VAC	\suppressor/
w	230 VAC	e e
Z	Othe	r voltages and electrical option


 $\ast$  DIN terminal, Faston terminal or DC specification are not available.

### For other special options, refer to page 19.

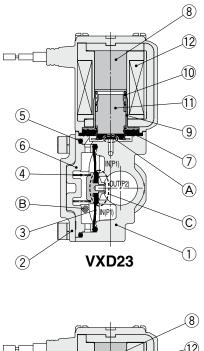
	24 VAC
Special voltage	48 VAC
Special voltage	220 VAC
	240 VAC
Conduit terminal wi	th light
Oil-free	
G thread	
NPT thread	
With bracket	

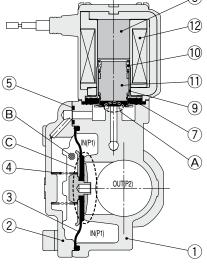
# Series VXD Other Special Options

Electrical options (Special voltage, With light, Without DIN connector)

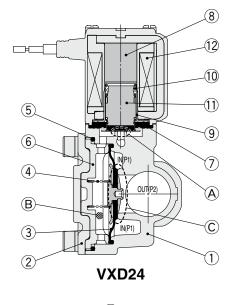


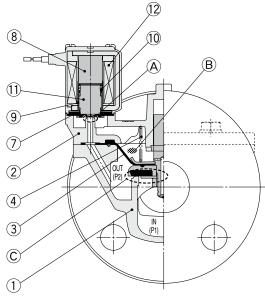
### Special voltage/With light/Without DIN connector


Specification		Voltage	Electrical entry
	1A	48 VAC	Lioothoar only
	1B	220 VAC	Grommet
	1C	240 VAC	(With surge voltage suppressor)
	10	24 VAC	_ (
	1D	12 VDC	Grommet
	1E	12 VDC	Grommet (With surge voltage suppressor)
	1F	48 VAC	aroniniot (that ourge to lage capproced)
	1G	220 VAC	
e	1H	240 VAC	DIN terminal
Itag	1V	24 VAC	(With surge voltage suppressor)
Special voltage	1J	12 VDC	-
cial	1K	48 VAC	
be	1L	220 VAC	
0	1M	240 VAC	Conduit terminal
	1W	24 VAC	(With surge voltage suppressor)
	1N	12 VDC	
	1P	48 VAC	
	1Q	220 VAC	Conduit
	1R	240 VAC	Conduit
	1Y	24 VAC	(With surge voltage suppressor)
	1S	12 VDC	
	1T	12 VDC	Faston terminal
	2A	24 VDC	
	2B	100 VAC	1
	2C	110 VAC	-
	2D	200 VAC	
	2E	230 VAC	DIN terminal
	2F	48 VAC	(With surge voltage suppressor)
	2G	220 VAC	-
	2H	240 VAC	-
Ĕ	2V	24 VAC	
lig	2J	12 VDC	-
With light	2K	24 VDC	
	2L	100 VAC	
	2M	110 VAC	
	2N	200 VAC	
[	2P	230 VAC	Conduit terminal
	2Q	48 VAC	(With surge voltage suppressor)
	2R	220 VAC	
	2S	240 VAC	
	2W	24 VAC	
	2T	12 VDC	
	3A	24 VDC	
to	3B	100 VAC	_
Without DIN connector	3C	110 VAC	_
NO	3D	200 VAC	
ž.	3E	230 VAC	DIN terminal
μD	3F	48 VAC	(With surge voltage suppressor)
nou	3G	220 VAC	_
Wit	3H	240 VAC	-
	3V	24 VAC	-
	3J	12 VDC	


	v concentration ozone to deionized water, C	resis Dil-fre	ns stant and applicable e, Port thread)	
	VXD23	0	AAZ	Ľ
	Enter standa product numb			
	r options (Low concen	tratio		
	applicable to deionized Low concentration ozone resistant and applicable			
Symbol	to deionized water *1 (Seal material: FKM)	Oil-free	Port thread	
Nil A			Rc, With one-touch fitting *2 G	
B	—	—	NPT	
С	0	_	Rc, With one-touch fitting *2	
D E	—	0	G NPT	
F	0		G	
G	0		NPT	
H K	0	0	Rc, With one-touch fitting *2 G	L.
L			NPT	
Z			Rc, With one-touch fitting *2	
	ouch fittings are attached to t	•	,	
	<b>\A</b> /!41, 1, .			
	With b	аск	et	
•			ХВ	
	/XD2			
		[		L
Enter st	andard product number.			ſ
		With	bracket	ſ
1 Applie	es the VXD2 $_{\rm A}^3$ to VXD2 $_{\rm D}^6$ .		bracket	I
1 Applie 2 Brack			bracket	
1 Applie 2 Brack No ne 3 The b	es the VXD2 $_{\rm A}^3$ to VXD2 $_{\rm D}^6$ . et is standardized with the re- ed to add "XB". oracket for aluminum, C37 a	sin bod nd sta	bracket ● ly type (VXD230 ^D _F □). inless steel body type of the	
1 Applie 2 Brack No ne 3 The b VXD2	es the VXD2 $_{\rm A}^3$ to VXD2 $_{\rm D}^6$ . et is standardized with the re- eed to add "XB". pracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.)	sin bod nd sta e produ	bracket •	
1 Applie 2 Brack No ne 3 The b VXD2	es the VXD2 $^{3}_{A}$ to VXD2 $^{6}_{D}$ . et is standardized with the re- ed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the	sin bod nd sta e produ	bracket •	
1 Applie 2 Brack No ne 3 The b VXD2	es the VXD2 $_{\rm A}^3$ to VXD2 $_{\rm D}^6$ . et is standardized with the re- eed to add "XB". pracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.)	sin bod nd sta e produ	bracket •	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- eed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) <b>VXD2</b> ³ / _A <b>Bracket mo</b>	sin bod nd sta e produ	bracket •	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 $_{\rm A}^3$ to VXD2 $_{\rm D}^6$ . et is standardized with the re- eed to add "XB". pracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.)	sin bod nd sta e produ <b>Duntin</b>	bracket •	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- eed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) <b>VXD2</b> ³ / _A <b>Bracket mo</b>	sin bod nd sta e produ <b>Duntin</b>	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- eed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) <b>VXD2</b> ³ / _A <b>Bracket mo</b>	sin bod nd sta e produ <b>Duntin</b>	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- sed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et For 1/4, 3/8	sin bod nd sta e produ <b>Duntin</b>	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- sed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et For 1/4, 3/8	sin bod nd sta produ puntin Port	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions	
1 Applie 2 Brack No ne 3 The b VXD2 to the	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- bed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et For 1/4, 3/8	sin bod nd sta produ puntin Port	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions	
*1 Applie 2 Brack No ne 3 The t VXD2 to the Port siz	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- sed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et For 1/4, 3/8 rightening torque of 2 to 3 N-r r symbols in the order below	sin bod nd sta produ puntin Port	bracket • by type (VXD230 $\frac{P}{F}$ )). inless steel body type of the act, but not assembled. (Refer g dimensions size: For 1/2 v Tightening torque of 2 to 3 N·m	
*1 Applie *2 Brack No ne *3 The b VXD2 to the Port siz * Ente elect	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- sed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et is for 1/4, 3/8 re: For 1/4, 3/8 rightening torque of 2 to 3 N-r	sin bod nd sta produ puntin Port acket ~	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions size: For 1/2 $rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{$	
*1 Applie *2 Brack No ne *3 The b VXD2 to the Port siz * Ente elect	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- sed to add "XB". oracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et For 1/4, 3/8 rightening torque of 2 to 3 N-r r symbols in the order below	sin bod nd sta produ puntin Port acket ~	bracket • by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions size: For 1/2 $rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{rac{1/2}{$	
*1 Applie *2 Brack No ne *3 The b VXD2 to the Port siz * Ente elect	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- ed to add "XB". pracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et is standardized to a standard restrict to a standard to a standard rightening torque of 2 to 3 N-r r symbols in the order below rical option, other option. cample) VXD2 3 2 / Electrical option	sin bod nd sta produce puntin Port acket ~	bracket by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions size: For 1/2 Tightening torque of 2 to 3 N-m ordering a combination of A Z XB	
1 Applie 2 Brack No ne 3 The b VXD2 to the Port siz	es the VXD2 ³ / _A to VXD2 ⁶ / _D . et is standardized with the re- ed to add "XB". pracket for aluminum, C37 a 23 is shipped together with the figure below for mounting.) VXD2 ³ / _A Bracket mo et is standardized to a standard restrict to a standard to a standard rightening torque of 2 to 3 N-r r symbols in the order below rical option, other option. cample) VXD2 3 2 / Electrical option	sin bod nd sta produ puntin Port Port acket ~	bracket by type (VXD230 $\frac{P}{F}$ ). inless steel body type of the act, but not assembled. (Refer g dimensions size: For 1/2 Tightening torque of 2 to 3 N-m ordering a combination of A Z XB	

S


# Series VXD Construction


### Normally Closed (N.C.)











VXD27, 28, 29

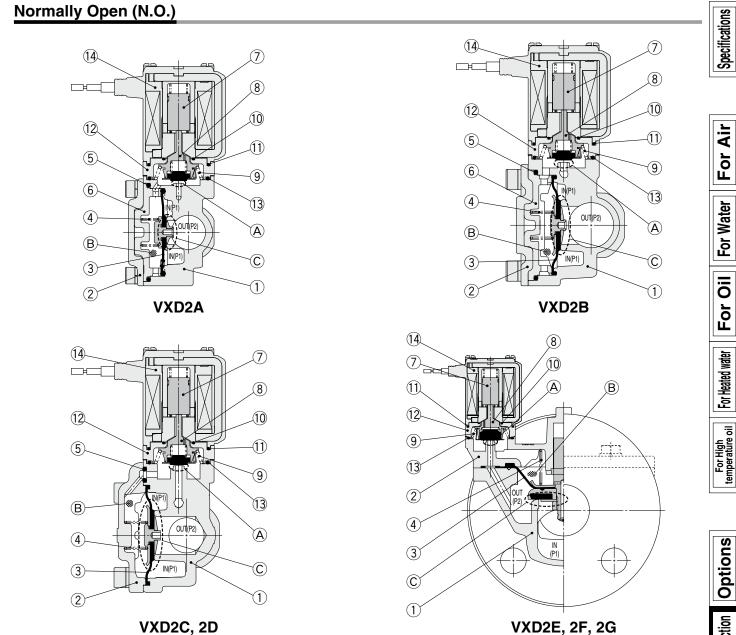
#### **Component Parts**

	•							
No.	Description	Model	Material					
		VXD23	C37, Stainless steel, Aluminum, Resin (PBT)					
1	Body	VXD24 to 26	C37, Stainless steel					
	-	VXD27 to 29	CAC407					
		VXD23, 24	Stainless steel					
2	Bonnet	VXD25, 26	C37, Stainless steel					
		VXD27 to 29	CAC407					
3	Diaphragm assembly	VXD23 to 29	Stainless steel, NBR, FKM, EPDM					
4	Spring	Spring VXD23 to 29 Stainl						
5	O-ring	VXD23 to 26	NBR, FKM, EPDM					
6	Buffer	VXD23, 24	PPS					
7	Stopper		NBR, FKM, EPDM					
8	Core		Fe					
9	Tube	VXD23 to 29	Stainless steel					
10	Spring	VAD23 10 29	Stainless steel					
11	Armature assembly		Stainless steel, NBR, FKM, EPDM, Resin (PPS)					
12	Solenoid coil		Cu + Fe + Resin					
20	·							

### Operation

### <Valve opened>

When coil 0 is energized, armature assembly 1 is attracted by core 3 and pilot valve 4 is opened.


When B is opened, the pressure in pressure chamber B is reduced and main valve C is opened.

#### <Valve closed>

**SMC** 

When coil 0 is de-energized, pilot valve A is closed, pressure in pressure chamber B increases, and main valve C is closed.

## Construction Series VXD



**SMC** 

VXD2E, 2F, 2G



### **Component Parts**

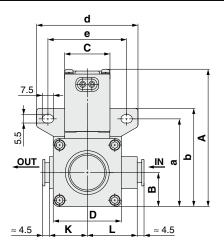
Description Body	Model VXD2A VXD2B to 2D VXD2E to 2G	Material C37, Stainless steel, Aluminum, Resin (PBT) C37, Stainless steel						
Body		C37, Stainless steel						
	VXD2E to 2G							
		CAC407						
	VXD2A, 2B	Stainless steel						
Bonnet	VXD2C, 2D	C37, Stainless steel						
	VXD2E to 2G	CAC407						
Diaphragm assembly	ragm assembly VXD2A to 2G Stainless ste							
Spring	VXD2A to 2G	Stainless steel						
O-ring	VXD2A to 2D	NBR, FKM, EPDM						
Buffer	VXD2A, 2B	PPS						
Sleeve assembly		Stainless steel, Resin (PPS)						
Push rod assembly		Resin (PPS), Stainless steel, NBR, FKM, EPDM						
Stopper		Stainless steel						
O-ring A		NBR, FKM, EPDM						
O-ring B	VADZA 10 ZG	NBR, FKM, EPDM						
Adapter		Resin (PPS)						
O-ring C		NBR, FKM, EPDM						
		Cu + Fe + Resin						
	Push rod assembly Stopper D-ring A D-ring B Adapter D-ring C	Push rod assembly bitopper D-ring A D-ring B Ndapter						

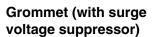
#### Operation

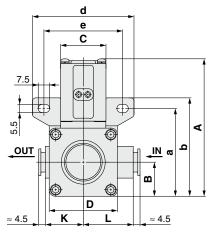
#### <Valve opened>

When coil (4) is energized, (already opened) pilot value (A) is closed, pressure in pressure chamber  $\ensuremath{\mathbb{B}}$  increases, and main valve C is closed.

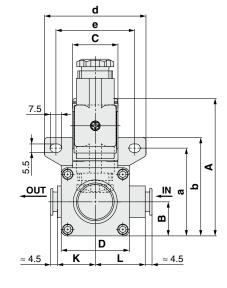
#### <Valve closed>

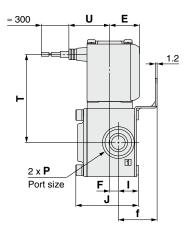

When coil ⁽¹⁾ is de-energized, (already closed) pilot valve (A) is opened, pressure in pressure chamber (B) decreases, and main valve C is opened.

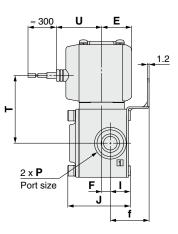


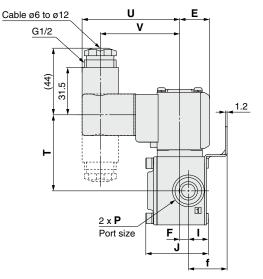


For information on handling one-touch fittings and appropriate tubing, refer to page 47 and KQ2 series one-touch fittings in Best Pneumatics No. 6. The KQ2 series information can be downloaded from the following SMC website, http://www.smcworld.com

### Dimensions/VXD2³_A Body Material: Resin (Ø10, Ø3/8", Ø12)


### Grommet




### **DIN terminal**









(mm) Electrical entry One-touch fitting Grommet (with surge **DIN** terminal Model Δ в С D Е F κ Grommet Т J L voltage suppressor) Ρ v т U т U Т U 50.5 58.5 91 45 VXD2³_A 22.5 27 64.5 52.5 ø10, ø3/8", ø12 30 45 20 6 13.5 41.5 25 33 30 (97) (64.5) (50.5) (56)

One-touch fitting Mounting bracket dimensions Model Ρ а b d е f VXD2³_A ø10, ø3/8", ø12 58 65 67 52 25.5

( ): Denotes the Normally Open (N.O.) dimensions. 22




# Air

Specifications

#### **Conduit terminal** d е 34 (U±2) Е С (V±2) 32 $\mathbf{D}$ 1.2 7.5 ╞ 25 1 $\oplus$ H 5.5 ۲ G1/2 6 Π **0** <u>IN</u> ത ۵ 1 ۲ ۲ 2 x **P** F D Port size I κ L Ĵ ≈ 4.5 ≈ 4.5 d Conduit е С U Е ≈ 280 1.2 7.5 FF. $\oplus$ G1/2 H 5.5 ⊲ ٩ <u>IN</u> a മ ¢ O 2 x **P** D F I Port size Κ ≈ 4.5 L ≈ 4.5 .1 d е С U Е 1.2 7.5 $\oplus$ н 5.5 ∢ $\overline{\odot}$ $\odot$ ٩ OUT IN ß ۵ 1 O € 2 x **P** Port size D F, I. <u>~ 4.5</u> κ Ĵ L ≈ 4.5 nting mei Model Ρ а b d е f f 25.5

## Dimensions/VXD2³_A Body Material: Resin (Ø10, Ø3/8", Ø12)

### **Faston terminal**

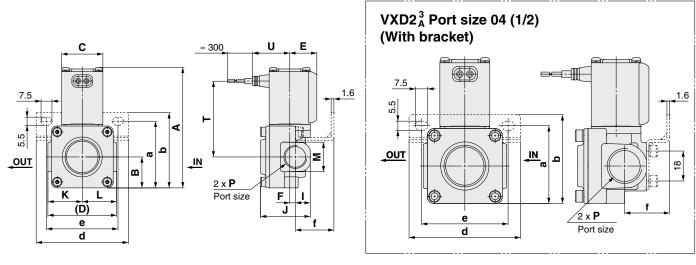




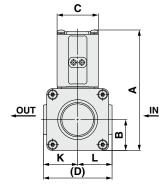
Dimensions Construction Options

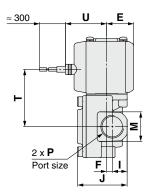
															Elec	ctrical e	ntry		
Mo	odel	One-touch fitting P	A	в	с	D	E	F	I	J	к	L	Cond	duit terr	ninal	Con	duit	Fas term	
													Т	U	v	Т	U	Т	U
vx	D2 ³	ø10, ø3/8", ø12	91 (97)	22.5	30	45	20	6	13.5	41.5	25	33	52.5 (58)	99.5	68.5	52.5 (58)	47.5	58.5 (64.5)	23
		One-touch fitting	Mo	unting h	rackot	dimonsi	ione												

VXD2³ ø10, ø3/8", ø12 58 65 67 (): Denotes the Normally Open (N.O.) dimensions.

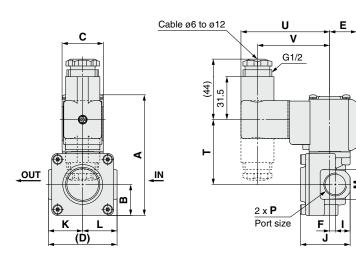



52


(mm)


### Dimensions/VXD2³_A Body Material: Aluminum, C37, Stainless Steel

### Grommet




# Grommet (with surge voltage suppressor)



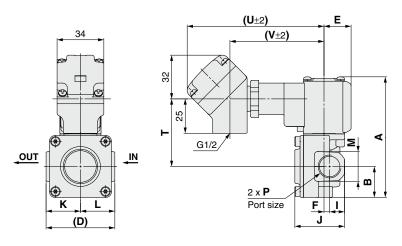


### **DIN terminal**

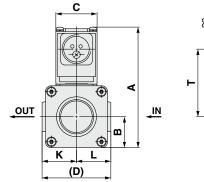


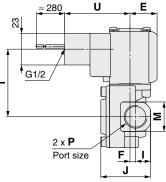
																				(mm)
												Ν	N			Elec	trical e	entry		
Model	Port size <b>P</b>	A	в	с	D	Е	F	Т	J	к	L	C37, Stainless	Aluminum			Grommet (with surge voltage suppressor)		2 DIN terminal		nal
	•											steel body	body type	т	U	Т	U	Т	C	v
VXD2 ³	1/4, 3/8	88	22.5	30	50	20	4.5	11	37.5	25	25	22	24	55.5	27	42	30	47.5	64.5	52.5
VADZA	1/2	(93.5)	22.5	30	50	20	5	13	42.5	20	25	27	30	(61)	21	(47.5)	30	(53)	04.5	52.5

Model	Port size	M	Mounting bracket dimensions									
woder	Р	а	b	d	е	f						
	1/4, 3/8	48.5	55	67	52	28						
VXD2Å	1/2	47	53.5	67	52	27						


(): Denotes the Normally Open (N.O.) dimensions.

Aluminum body is for air. Refer to page 4 for details.





### Dimensions/VXD2³_ABody Material: Aluminum, C37, Stainless Steel

### **Conduit terminal**



### Conduit





### VXD2³⊿^C_F□

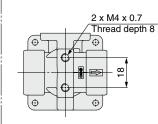
Note) Only the VXD2 ³_A with port size of 04 (1/2) has threads on the bottom of the body.

Air

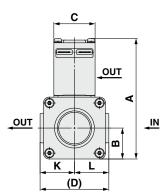
Water

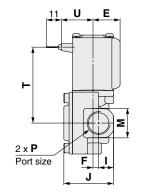
Specifications

For Air


For Water

For Oil


For Heated water


For High temperature oil

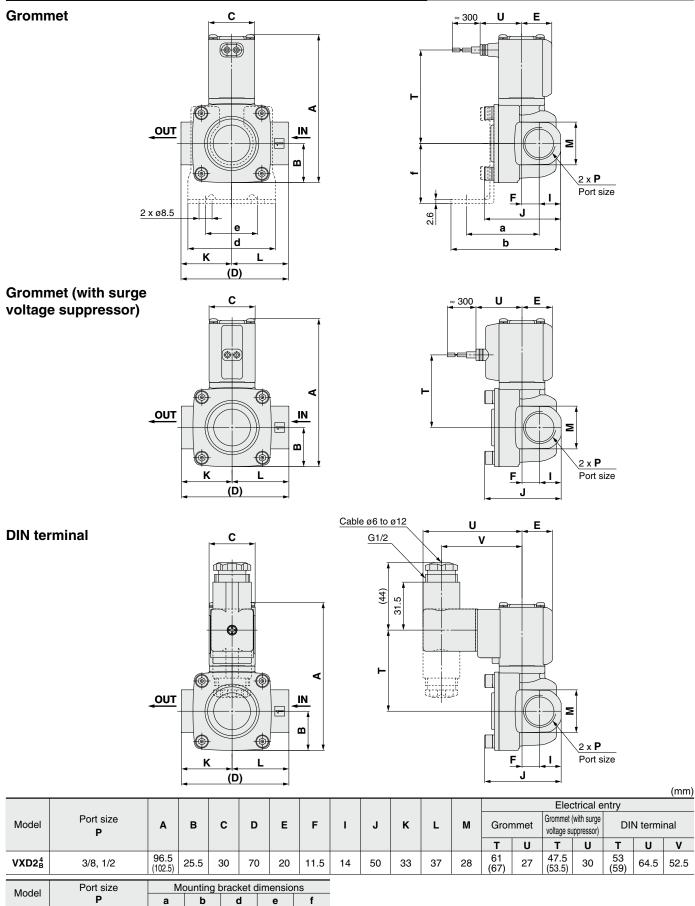
Dimensions Construction Options



### Faston terminal






																			(mm)
															Ele	ctrical e	ntry		
Model	Port size <b>P</b>	A	в	с	D	Е	E F I J K L M Co		Con	Conduit terminal			Conduit		ton ninal				
													т	U	v	Т	U	Т	U
VVD23	1/4, 3/8	88	00 F	30	50	20	4.5	11	37.5	25	05	22	49.5	00 5	60 F	49.5	47.5	55.5	00
VXD2 ³	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	(55)	99.5	68.5	(55)	47.5	(61)	23
(): Denot	oo the Norm			) dimor															

( ): Denotes the Normally Open (N.O.) dimensions. Aluminum body is for air. Refer to page 4 for details.



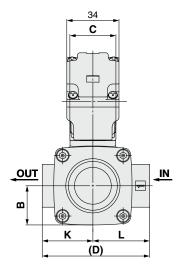


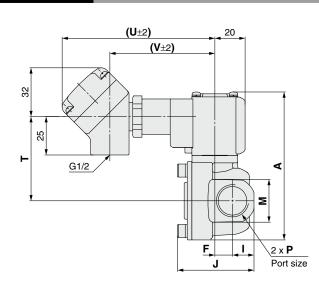
### Dimensions/VXD2⁴ Body Material: C37, Stainless Steel



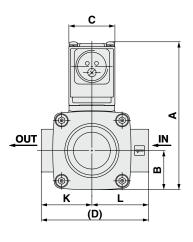
 VXD2⁴
 3/8, 1/2
 47.5
 71.5
 57
 34

 (): Denotes the Normally Open (N.O.) dimensions.

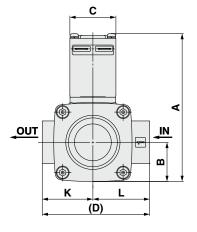


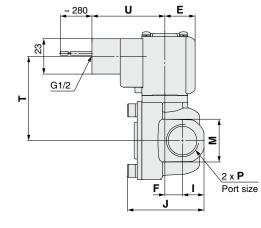


39

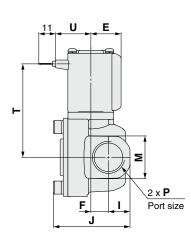
Air


### Dimensions/VXD2⁴ Body Material: C37, Stainless Steel

### **Conduit terminal**





Conduit



### **Faston terminal**



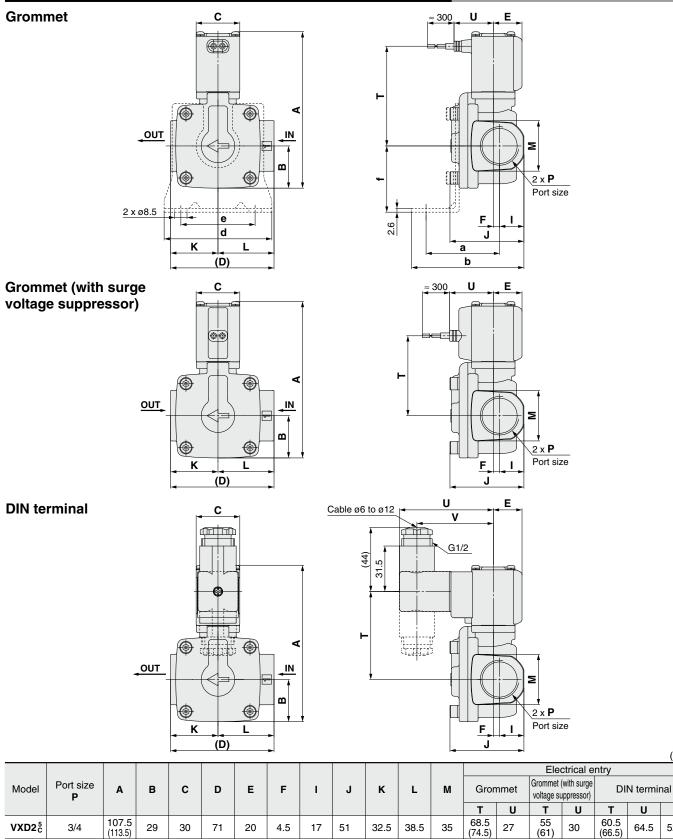






Specifications




																			(mm)
															Eleo	ctrical e	ntry		
Model	Port size <b>P</b>	A	в	с	D	Е	F	I	J	к	L	м	Conduit terminal			Cor	nduit	Faston terminal	
													Т	U	v	Т	U	Т	U
	3/8, 1/2	96.5 (102.5)	25.5	30	70	20	11.5	14	50	33	37	28	55 (61)	99.5	68.5	55 (61)	47.5	61 (67)	23

(): Denotes the Normally Open (N.O.) dimensions.



# Series VXD For Air/Water/Oil

### Dimensions/VXD2 $_{C}^{5}/2_{D}^{6}$ Body Material: C37, Stainless Steel



126.5 (134.5) Port size Mounting bracket dimensions Model Ρ b d а е f VXD2⁵ 3/4 50.5 77.5 74 51 45.5 VXD2⁶ 55.5 85.5 49.5 81 58 1

33

35

95

22

4.5

20

(): Denotes the Normally Open (N.O.) dimensions. 28

VXD2⁶

1

59.5

45.5

49.5

82.5 (90.5)

42

69 (77)

29.5

74.5 (82.5)

67

32.5

(mm)

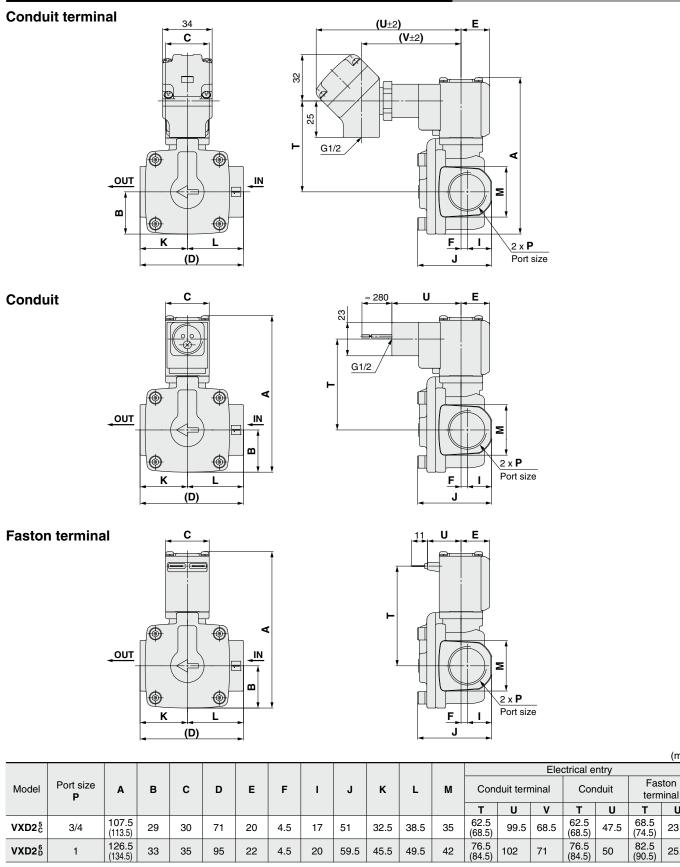
٧

52.5

55



Specifications


For Oil For Water For Air

For Heated water

For High temperature oil

Dimensions Construction Options

### Dimensions/VXD2 $_{C}^{5}/2_{D}^{6}$ Body Material: C37, Stainless Steel

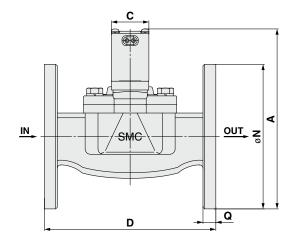


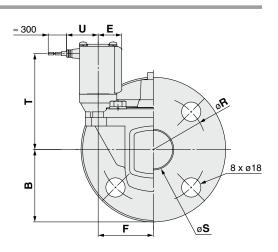
Model	Port size	N	lounting l	bracket d	limensior	IS
Model	Р	а	b	d	е	f
VXD2 ⁵	3/4	50.5	77.5	74	51	45.5
VXD2 ⁶	1	55.5	85.5	81	58	49.5

(): Denotes the Normally Open (N.O.) dimensions.

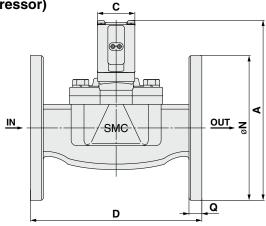


(mm)

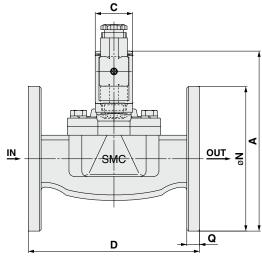

U

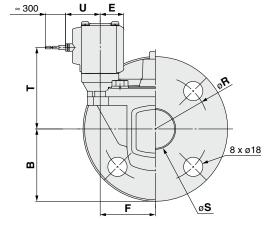

23

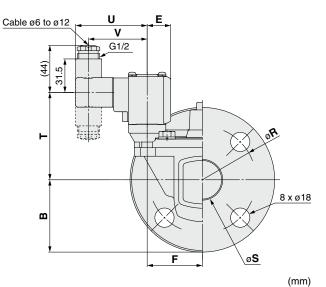
25.5


# Dimensions/VXD2⁷/2⁸/2⁹_G Body Material: CAC407

### Grommet



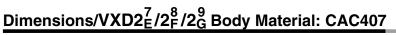



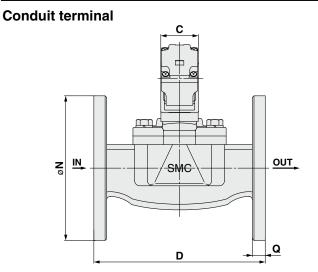


# Grommet (with surge voltage suppressor)

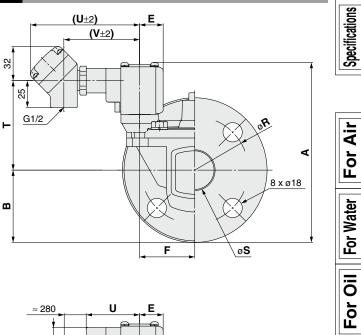


### **DIN terminal**

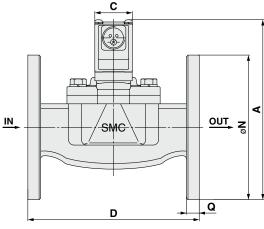






														Ele	ctrical e	ntry		(1111)
Model	Applicable flange	A	в	с	D	Е	F	N	Q	R	s	Gror	nmet	Grommet ( voltage su	· ·	DI	N termir	nal
	_											Т	U	Т	U	Т	U	V
$VXD2_{E}^{7}$	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	90 (98)	29.5	76 (84)	32.5	82 (90)	67	55
VXD2 ⁸ _F	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	98.5 (106.5)	32	85 (93)	35	90.5 (98.5)	69.5	57.5
VXD2 ⁹ _G	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	104 (112)	32	90.5 (98.5)	35	96 (104)	69.5	57.5

(): Denotes the Normally Open (N.O.) dimensions. 30



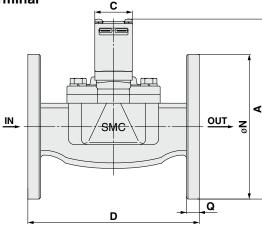


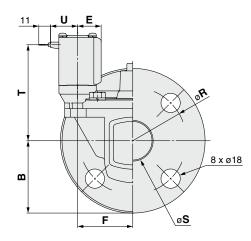











U

≈ 280

### **Faston terminal**



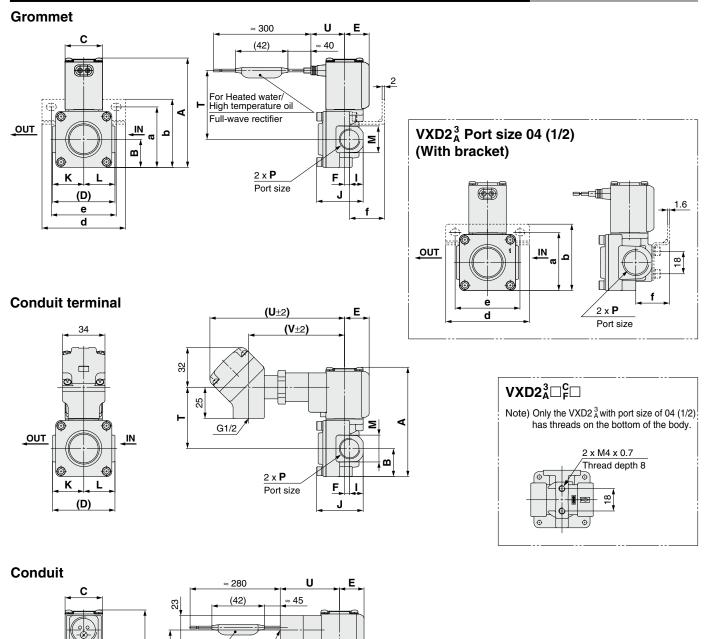




For Heated water

For High temperature oil

8


8 x ø18

		-																(mm)
														Ele	ctrical e	ntry		
Model	Applicable flange	A	в	с	D	E	F	N	Q	R	s	Con	duit tern	ninal	Cor	nduit		ston ninal
												Т	U	v	Т	U	Т	U
	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	84 (92)	102	71	84 (92)	50	90 (98)	25.5
VXD2 ⁸	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	92.5 (100.5)	104.5	73.5	92.5 (100.5)	52.5	98.5 (106.5)	28
VXD2 ⁹	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	98 (106)	104.5	73.5	98 (106)	52.5	104 (112)	28

(): Denotes the Normally Open (N.O.) dimensions.



### Dimensions/VXD2³_A Body Material: C37, Stainless Steel (1/4, 3/8, 1/2)



																			(mm)
	_														Eleo	ctrical e	ntry		
Model	Port size	Α	в	С	D	Е	F	I	J	к	L	м	Gron	nmet	Con	duit tern	ninal	Con	nduit
	Р												Т	U	Т	U	v	Т	U
	1/4, 3/8	88	22.5	30	50	20	4.5	11	37.5	25	25	22	55.5	07	49.5	100	77	49.5	47 5
VXD2Å	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	(61)	27	(55)	108	//	(55)	47.5

Σ

G1/2 For Heated water/

High temperature oil

2 x **P** 

Port size

Full-wave rectifier

C

F I

J

Model	Port size	N	lounting l	bracket d	limensior	IS
wouer	Р	а	b	d	е	f
	1/4, 3/8	48.5	55	67	52	28
VXDZA	1/2	47	53.5	67	52	27

( ): Denotes the Normally Open (N.O.) dimensions.  $\ensuremath{32}$ 

IN

ш

۲

L

O

κ

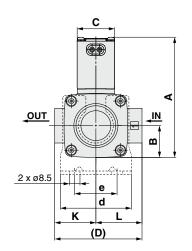
(D)

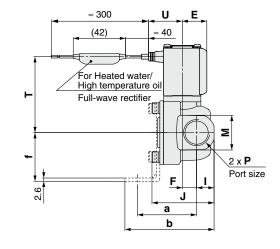




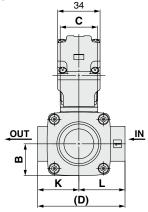
Specifications

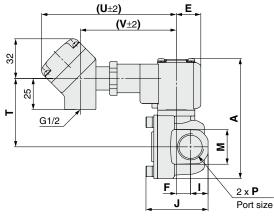
For Water For Air


For Oil

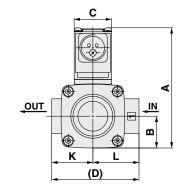

For Heated water

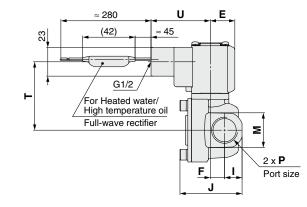
For High temperature oil


### Dimensions/VXD2⁴_B Body Material: C37, Stainless Steel





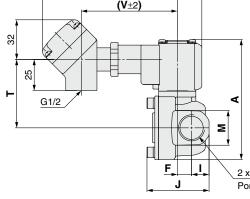





### **Conduit terminal**





### Conduit



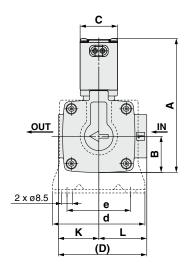


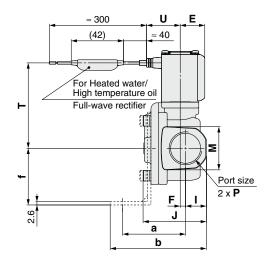

																			(mm)
															Ele	ctrical e	ntry		
Model	Port size	Α	в	С	D	Е	F	I	J	к	L	м	Gron	nmet	Con	duit terr	ninal	Cor	nduit
	Р												Т	U	Т	U	v	Т	U
$VXD2_B^4$	3/8, 1/2	96.5 (102.5)	25.5	30	70	20	11.5	14	50	33	37	28	61 (67)	27	55 (61)	108	77	55 (61)	47.5
Model	Port size		Mountii	ng brac	ket dime	ensions	;												

Model Ρ а b d е f VXD2⁴_B 3/8, 1/2 47.5 39 71.5 57 34

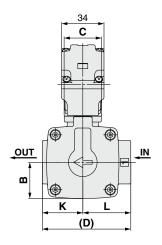
(): Denotes the Normally Open (N.O.) dimensions.

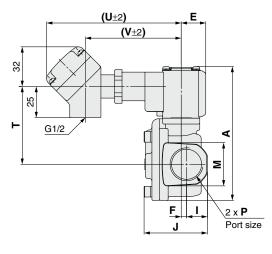



Dimensions Construction Options

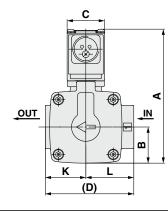

For Heated water/High temperature oil

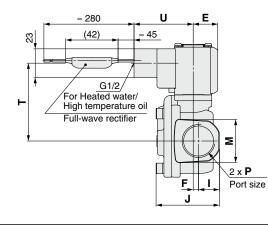
## Dimensions/VXD2⁵/2⁶_D Body Material: C37, Stainless Steel


### Grommet


Series VXD







### **Conduit terminal**





### Conduit

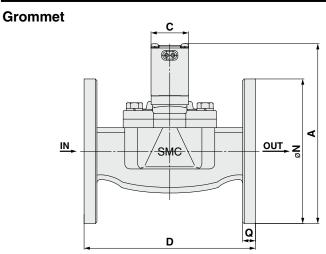




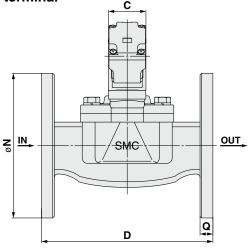
(mm)

	-														Ele	ctrical e	ntry		
Model	Port size	Α	в	С	D	Е	F	I	J	κ	L	м	Gron	nmet	Con	duit tern	ninal	Con	Iduit
	Р												Т	U	Т	U	v	Т	U
VXD2 ⁵	3/4	107.5 (113.5)	29	30	71	20	4.5	17	51	32.5	38.5	35	68.5 (74.5)	27	62.5 (68.5)	108	77	62.5 (68.5)	47.5
VXD2 ⁶ _D	1	126.5 (134.5)	33	35	95	22	4.5	20	59.5	45.5	49.5	42	82.5 (90.5)	29.5	76.5 (84.5)	110.5	79.5	76.5 (84.5)	50

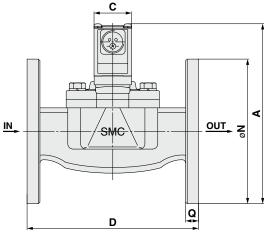
Model	Port size	N	lounting l	bracket d	imensior	IS
wouer	Р	а	b	d	е	f
VXD2 ⁵	3/4	50.5	77.5	74	51	45.5
	1	55.5	85.5	81	58	49.5

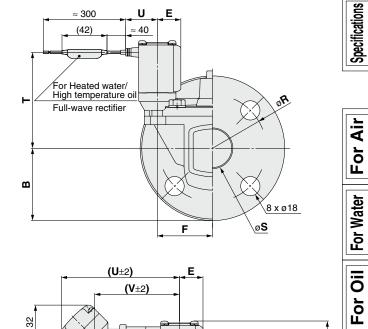

( ): Denotes the Normally Open (N.O.) dimensions.  $\ensuremath{\mathbf{34}}$ 

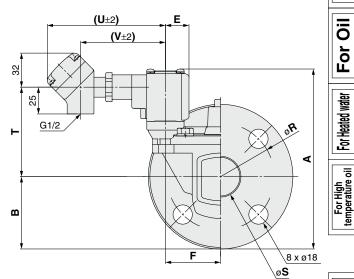


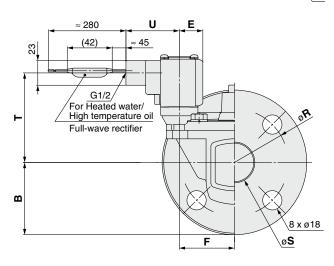

For Heated water

Dimensions Construction Options


# Dimensions/VXD2⁷_E/2⁸_F/2⁹_G Body Material: CAC407














																		(mm)
							Electrical entry											
Model	Applicable	Α	В	С	D	Е	F	N	Q	R	S	Gror	nmet	Con	iduit tern	ninal	Cor	nduit
	flange											Т	U	Т	U	v	Т	U
	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	90 (98)	29.5	84 (92)	110.5	79.5	84 (92)	50
VXD2 ⁸ _F	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	98.5 (106.5)	32	92.5 (100.5)	113	82	92.5 (100.5)	52.5
VXD2g	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	104 (112)	32	98 (106)	113	82	98 (106)	52.5

(): Denotes the Normally Open (N.O.) dimensions.



## **Replacement Parts No.**

DIN Connector

Without electrical option	C18312G6GCU			
With electrical option (light)	GDM2A- <u>L</u> [			
$\sim$	Electrical option	•Ra	ted voltage	
	L With light	1	100 VAC, 110 VAC	
		2	200 VAC, 220 VAC 230 VAC, 240 VAC	
		5	24 VDC	
		6	12 VDC	
		13	24 VAC	
		15	48 VAC	

- Gasket for DIN Connector VCW20-1-29-1
- Lead Wire Assembly for Faston Terminal (Set of 2 pcs.)
   VX021S-1-16FB
- Bracket Assembly for the VXD2 $_{A}^{3}$  Metal Body (C37, Stainless steel, Aluminum)

VXD30S-14A-1

Port size: For 1/4, 3/8

Port size: For 1/2

VXD30S-14A-3

* 2 mounting screws (M3 hexagon socket head cap screws) are shipped together with the bracket assembly, but not assembled.

Series VXD Glossary of Terms

#### Pressure Terminology

#### 1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation. When the outlet pressure is 0 MPa, this becomes the maximum operating pressure.

#### 2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully opened.

#### 3. Maximum system pressure

The maximum pressure that can be applied inside the pipelines (line pressure).

[The pressure differential in the solenoid valve portion must be below the maximum operating pressure differential.]

#### 4. Withstand pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed (static) pressure and returning to the operating pressure range. [value under the prescribed conditions]

### **Electrical Terminology**

#### 1. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

#### 2. Enclosure

A degree of protection defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects."

Verify the degree of protection for each product.



#### • Second characteristic numeral First characteristic numeral

#### First Characteristics:

Degrees of protection against solid foreign objects

	-333
0	Non-protected
1	Protected against solid foreign objects of 50 mmø and greater
2	Protected against solid foreign objects of 12 mmø and greater
3	Protected against solid foreign objects of 2.5 mmø and greater
4	Protected against solid foreign objects of 1.0 mmø and greater
5	Dust-protected
6	Dust-tight

### Second Characteristics:

D	Degrees of protection against water					
0	Non-protected	—				
1	Protected against vertically falling water drops	Dripproof type 1				
2	Protected against vertically falling water drops when enclosure tilted up to $15^\circ$	Dripproof type 2				
3	Protected against rainfall when enclosure tilted up to 60°	Rainproof type				
4	Protected against splashing water	Splashproof type				
5	Protected against water jets	Water-jet-proof type				
6	Protected against powerful water jets	Powerful water-jet-proof type				
7	Protected against the effects of temporary immersion in water	Immersible type				
8	Protected against the effects of continuous immersion in water	Submersible type				

Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

#### Others

#### 1. Material

NBR: Nitrile rubber FKM: Fluoro rubber – Trade names: Viton[®], Dai-el[®], etc. EPDM: Ethylene-propylene rubber

#### 2. Oil-free treatment

The degreasing and washing of wetted parts

#### 3. Symbol

In the symbol (  $\square_{+}$ ) Port 1 (IN) and Potr 2 (OUT) are shown in a blocked condition ( $\frac{1}{-}$ ), but it is not possible to use the valve in cases of reverse pressure, where the Port 2 pressure is higher than the Port 1 pressure.

#### **Faston Terminal**

- 1. Faston[™] is a trademark of Tyco Electronics Corp.
- 2. For electrical connection of the Faston terminal and molded coil, please use Tyco's "Amp/Faston connector/250 Series" or the equivalent.



# Series VXD Solenoid Valve Flow-rate Characteristics (How to indicate flow-rate characteristics)

## 1. Indication of flow-rate characteristics

The flow-rate characteristics in equipment such as a solenoid valve etc. are indicated in their specifications as shown in Table (1).

## Table (1) Indication of Flow-rate Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard	
Droumatia	<i>C</i> , <i>b</i>	—	ISO 6358: 1989 JIS B 8390: 2000	
Pneumatic equipment	_	S	JIS B 8390: 2000 Equipment: JIS B 8373, 8374, 8375, 8379, 838	
		Cv	ANSI/(NFPA)T3.21.3: 1990	
Process fluid control	Av	—	IEC60534-2-3: 1997 JIS B 2005: 1995	
equipment			Equipment: JIS B 8471, 8472, 8473	

## 2. Pneumatic equipment

## 2.1 Indication according to the international standards

- (1) Conformed standard
  - ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids— Determination of flow-rate characteristics
  - JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids— How to test flow-rate characteristics
- (2) Definition of flow-rate characteristics

The flow-rate characteri stics are indicated as a result of a comparison between sonic conductance C and critical pressure ratio b.

Sonic conductance C	: Value which divides the passing mass flow rate of an equipment in a choked flow condition by the product of the upstream absolute pressure and the density in a standard condition.
Critical pressure ratio <b>b</b>	: Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked
	flow when the value is smaller than this ratio.
Choked flow	: The flow in which the upstream pressure is higher than the downstream pressure and
Choked now	
	where sonic speed in a certain part of an equipment is reached.
	Gaseous mass flow rate is in proportion to the upstream pressure and not dependent
	on the downstream pressure.
Subsonic flow	: Flow greater than the critical pressure ratio
	. Flow greater than the childer pressure ratio
Standard condition	: Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar),
	relative humidity 65%.
	It is stipulated by adding the "(AND)" after the unit depicting air volume

- It is stipulated by adding the "(ANR)" after the unit depicting air volume. (standard reference atmosphere)
  - Conformed standard: ISO 8778: 1990 Pneumatic fluid power—Standard reference atmosphere, JIS B 8393: 2000: Pneumatic fluid power—Standard reference atmosphere

## (3) Formula for flow rate

Described by the practical units as following.

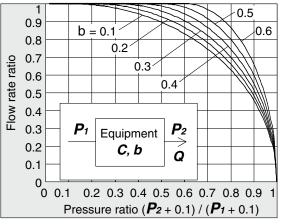
When 
$$\frac{P_2 + 0.1}{P_1 + 0.1} \le b$$
, choked flow  
 $Q = 600 \times C (P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$  .....(1)  
When  $\frac{P_2 + 0.1}{P_1 + 0.1} > b$ , subsonic flow  
 $Q = 600 \times C (P_1 + 0.1) \sqrt{1 - \left[\frac{P_2 + 0.1}{P_1 + 0.1} - b\right]^2} \sqrt{\frac{293}{273 + t}}$  .....(2)

**Q**: Air flow rate [dm³/min (ANR)], dm³ (Cubic decimeter) of SI unit are allowed to be described by L (liter). 1 dm³ = 1 L

- C : Sonic conductance [dm³/(s·bar)]
- **b** : Critical pressure ratio [--]
- **P**₁ : Upstream pressure [MPa]
- **P**₂ : Downstream pressure [MPa]
- *t* : Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow-rate characteristics are shown in Graph (1). For details, please make use of SMC's "Energy Saving Program".


## Example)

Obtain the air flow rate for  $P_1 = 0.4$  [MPa],  $P_2 = 0.3$  [MPa], t = 20 [°C] when a solenoid value is performed in  $C = 2 [dm^{3}/(s \cdot bar)]$  and b = 0.3.

According to formula (1), the maximum flow rate =  $600 \times 2 \times (0.4 + 0.1) \times \sqrt{\frac{293}{273 + 20}} = 600 \text{ [dm³/min (ANR)]}$ 

Pressure ratio =  $\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$ 

Based on Graph (1), the flow rate ratio will be 0.7 when the pressure ratio is 0.8 and b = 0.3. Therefore, flow rate = Maximum flow rate x flow rate ratio = 600 x 0.7 = 420 [dm³/min(ANR)]



Graph (1) Flow-rate characteristics

## (4) Test method

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance C from this maximum flow rate. Besides that, substitute each data of others for the subsonic flow formula to find **b**, then obtain the critical pressure ratio **b** from that average.

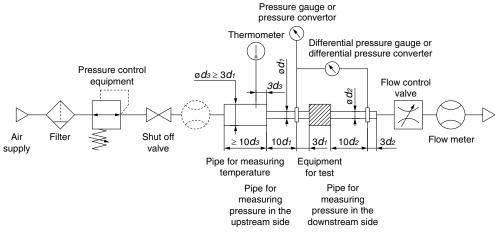



Fig. (1) Test circuit based on ISO 6358, JIS B 8390

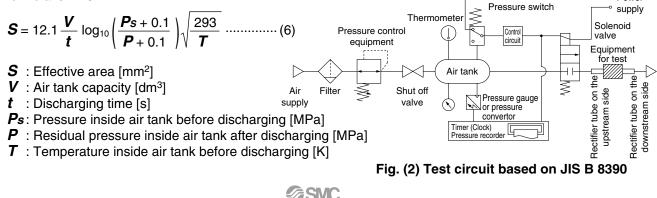


# Series VXD

## 2.2 Effective area S

(1) Conformed standard
 JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids—
 How to test flow-rate characteristics
 Equipment standards: JIS B 8373: 2 port solenoid valve for pneumatics
 JIS B 8374: 3 port solenoid valve for pneumatics
 JIS B 8375: 4 port, 5 port solenoid valve for pneumatics
 JIS B 8379: Silencer for pneumatics
 JIS B 8381: Fittings of flexible joint for pneumatics
 (2) Definition of flow-rate characteristics

- Effective area **S**: The cross-sectional area having an ideal throttle without friction or without reduced flow. It is deduced from the calculation of the pressure changes inside an air tank when discharging the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance **C**.
- (3) Formula for flow rate


When 
$$\frac{P_2 + 0.1}{P_1 + 0.1} \le 0.5$$
, choked flow  
 $Q = 120 \times S (P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$ .....(3)

When 
$$\frac{P_2 + 0.1}{P_1 + 0.1} > 0.5$$
, subsonic flow  
 $Q = 240 \times S \sqrt{(P_2 + 0.1) (P_1 - P_2)} \sqrt{\frac{293}{273 + t}}$ .....(4)

Conversion with sonic conductance C:

- $S = 5.0 \times C$  .....(5)
- Q : Air flow rate [dm³/min(ANR)], dm³ (cubic decimeter) of SI unit are allowed to be described by L (liter). 1 dm³ = 1 L
- **S** : Effective area [mm²]
- **P**₁ : Upstream pressure [MPa]
- **P**₂ : Downstream pressure [MPa]
- *t* : Temperature [°C]
- Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio  $\boldsymbol{b}$  is unknown for equipment. In the formula (2) by the sonic conductance  $\boldsymbol{C}$ , it is the same formula as when  $\boldsymbol{b} = 0.5$ .
- (4) Test method

Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area S, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8373, 8374, 8375, 8379, 8381, the pressure values are in parentheses and the coefficient of the formula is 12.9.



## 2.3 Flow coefficient *Cv* factor

# The United States Standard ANSI/(NFPA)T3.21.3: 1990: Pneumatic fluid power—Flow rating test procedure and reporting method-For fixed orifice components

Defines the flow coefficient, *Cv* factor by the following formula which is based on the test conducted by the test circuit analogous to ISO 6358.

$$\boldsymbol{C}\boldsymbol{V} = \frac{\boldsymbol{Q}}{114.5\sqrt{\frac{\Delta \boldsymbol{P}\left(\boldsymbol{P}_{2} + \boldsymbol{P}_{a}\right)}{T_{1}}}}$$
(7)

 $\Delta P$  : Pressure drop between the static pressure tapping ports [bar]

**P**₁ : Pressure of the upstream tapping port [bar gauge]

 $P_2$ : Pressure of the downstream tapping port [bar gauge]:  $P_2 = P_1 - \Delta P$ 

**Q** : Flow rate [dm³/s standard condition]

**P***a* : Atmospheric pressure [bar absolute]

T1 : Upstream absolute temperature [K]

Test conditions are  $P_1 + P_a = 6.5 \pm 0.2$  bar absolute,  $T_1 = 297 \pm 5$  K, 0.07 bar  $\leq \Delta P \leq 0.14$  bar.

This is the same concept as effective area A which ISO 6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.

## 3. Process fluid control equipment

(1) Conformed standard

IEC60534-2-3: 1997: Industrial-process control valves. Part 2: Flow capacity, Section Three-Test procedures

JIS B 2005: 1995: How to test flow coefficient of a valve

Equipment standards: JIS B 8471: Solenoid valve for water JIS B 8472: Solenoid valve for steam

JIS B 8473: Solenoid valve for fuel oil

## (2) Definition of flow-rate characteristics

**Av** factor: Value of the clean water flow rate represented by m³/s which runs through a valve (equipment for test) when the pressure differential is 1 Pa. It is calculated using the following formula.

$$\boldsymbol{A}\boldsymbol{v} = \boldsymbol{Q}\sqrt{\frac{\rho}{\Lambda \boldsymbol{P}}}$$

**Av** : Flow coefficient [m²]

**Q** : Flow rate [m³/s]

 $\Delta \boldsymbol{P}$  : Pressure differential [Pa]

- $\rho$  : Fluid density [kg/m³]
- (3) Formula for flow rate

Described by the practical units. Also, the flow-rate characteristics are shown in Graph (2). In the case of liquid:

$$\boldsymbol{Q} = 1.9 \times 10^6 \, \boldsymbol{A} \boldsymbol{v} \sqrt{\frac{\Delta \boldsymbol{P}}{\boldsymbol{G}}} \dots \tag{9}$$

**Q** : Flow rate [L/min]

Av: Flow coefficient [m²]

- $\Delta P$ : Pressure differential [MPa]
- **G** : Specific gravity [water = 1]

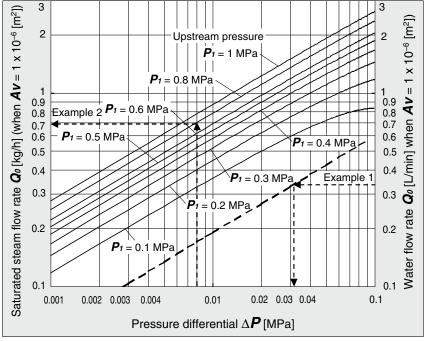
In the case of saturated steam:

$$Q = 8.3 \times 10^6 A v \sqrt{\Delta P (P_2 + 0.1)}$$
 .....(10)

- **Q** : Flow rate [kg/h]
- Av: Flow coefficient [m²]
- $\Delta \boldsymbol{P}$ : Pressure differential [MPa]
- $P_1$ : Upstream pressure [MPa]:  $\Delta P = P_1 P_2$
- P2 : Downstream pressure [MPa]

Conversion of flow coefficient:

 $Av = 28 \times 10^{-6} Kv = 24 \times 10^{-6} Cv$  .....(11)


Here,

Kv factor

: Value of the clean water flow rate represented by m³/h which runs through a valve at 5 to 40°C, when the pressure differential is 1 bar.

*Cv* factor (Reference values): Value of the clean water flow rate represented by US gal/min which runs through a valve at 60°F, when the pressure differential is 1 lbf/in² (psi).

Value is different from *Kv* and *Cv* factors for pneumatic purpose due to different test method.



Graph (2) Flow-rate characteristics

Example 1)

Obtain the pressure differential when water 15 [L/min] runs through a solenoid valve with an  $Av = 45 \times 10^{-6}$  [m²]. Since  $Q_0 = 15/45 = 0.33$  [L/min], according to Graph (2), if reading  $\Delta P$  when  $Q_0$  is 0.33, it will be 0.031 [MPa].

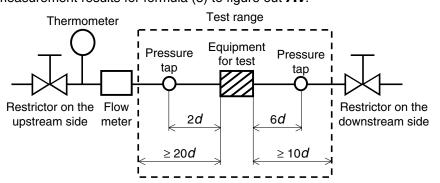
## Example 2)

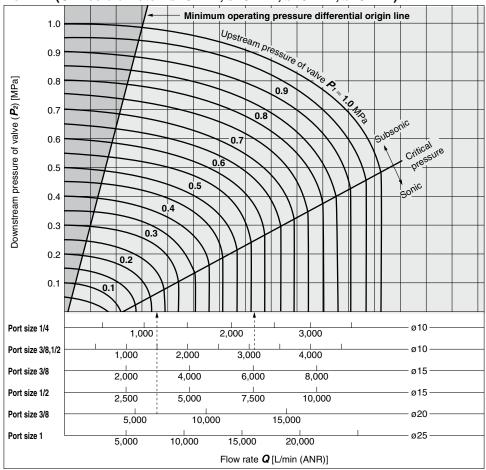
Obtain the saturated steam flow rate when  $P_1 = 0.8$  [MPa],  $\Delta P = 0.008$  [MPa] with a solenoid valve with an  $Av = 1.5 \times 10^{-6}$  [m²].

According to Graph (2), if reading  $Q_0$  when  $P_1$  is 0.8 and  $\Delta P$  is 0.008, it is 0.7 [kg/h]. Therefore, the flow rate  $Q = 0.7 \times 1.5 = 1.05$  [kg/h].

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (3). Next, pour water at 5 to 40°C, then measure the flow rate with a pressure differential of 0.075 MPa. However, the pressure differential needs to be set with a large enough difference so that the Reynolds number does not go below a range of 4 x 10⁴. By substituting the measurement results for formula (8) to figure out Av.



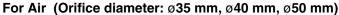


Fig. (3) Test circuit based on IEC60534-2-3, JIS B 2005

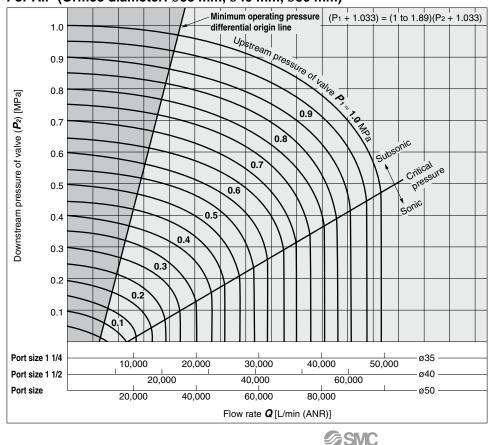
SMC

# Series VXD Flow-rate Characteristics

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 38 through to 42.

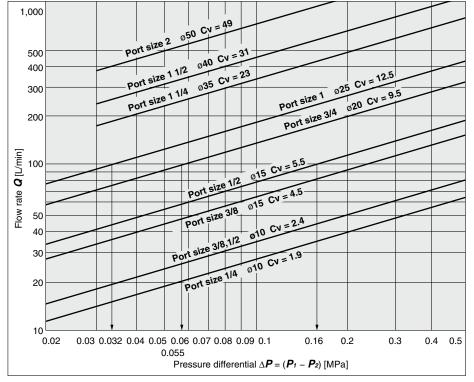
## For Air (Orifice diameter: ø10 mm, ø15 mm, ø20 mm, ø25 mm)





### How to read the graph

The sonic range pressure to generate a flow rate of 6000 L/min (ANR) is P1  $\approx$  0.57 MPa for a ø15 orifice (VXD240 WPort size: 3/8) and P1  $\approx$  0.22 MPa for a ø20 orifice (VXD250 Port size: 3/4).

## ▲Warning


In the area located left to the minimum operating pressure differential origin line in the flow-rate characteristics table, the minimum operating pressure is not generated. Do not use the product in this area as this may cause operation failure (valve opening failure, valve closing failure) or damage of the valve. Select valves with suitable size.





# Series VXD

## For Water



## How to read the graph

The pressure differential when water with flow rate of 100 L/min is applied is as follows. For a ø15 orifice (VXD214 $_0^2$ -04),  $\Delta P \approx 0.16$  MPa, for a ø20 orifice (VXD250),  $\Delta P \approx 0.055$  MPa, for a ø25 orifice (VXD260),  $\Delta P \approx 0.032$  MPa



Be sure to read before handling.

Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

### Design

## **▲Design**

1. Cannot be used as an emergency shutoff valve etc. The valves presented in this catalog are not designed for safety applications such as an emergency shutoff valve. If the valves are used in this type of system, other reliable safety assurance measures should also be adopted.

### 2. Extended periods of continuous energization

The solenoid coil will generate heat when continuously energized. Avoid using in a tightly shut container. Install it in a well-ventilated area. Furthermore, do not touch it while it is being energized or right after it is energized.

#### 3. Liquid rings

In cases with a flowing liquid, provide a bypass valve in the system to prevent the liquid from entering the liquid seal circuit.

#### 4. Actuator drive

When an actuator, such as a cylinder, is to be driven using a valve, take appropriate measures to prevent potential danger caused by actuator operation.

#### 5. Pressure (including vacuum) holding

It is not usable for an application such as holding the pressure (including vacuum) inside of a pressure vessel because air leakage is entailed in a valve.

- 6. When the conduit type is used as equivalent to an IP65 enclosure, install a wiring conduit etc.
- 7. When an impact, such as water hammer etc., caused by the rapid pressure fluctuation is applied, the solenoid valve may be damaged. Give an attention to it.

Selection

## **A**Warning

1. Minimum operating pressure differential

Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the capacity of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions (the piping is bent continuously due to elbow or tee, or narrow tube nozzle is installed in the end). If the product is used below the minimum operating pressure, the operation becomes unstable, which might cause valve opening or closing failure, or oscillation, leading to failure due to insufficient pressure differential. Select an appropriate valve size with reference to the flow-rate characteristics and flow-rate characteristics table (on pages 38 through to 44). Selection

## A Warning

## 2. Fluid

## 1) Type of fluid

Select an appropriate valve with reference to the table below for the general fluid. Before using a fluid, check whether it is compatible with the materials of each model by referring to the fluids listed in this catalog. Use a fluid with a kinematic viscosity of 50 mm²/s or less.

If there is something you do not know, please contact SMC. Applicable fluid

For Air	Air
For Water	Air/Water
For Oil	Air/Water/Oil
For Heated water	Air(up to 99°C)/Water/Heated water
For High temperature oil	Air(up to 99°C)/Water/High temperature oil

#### 2) Flammable oil, Gas

Check the specifications for leakage in the interior and/or exterior area.

#### 3) Corrosive gas

Cannot be used since it will lead to cracks by stress corrosion or result in other incidents.

- 4) Depending on water quality, a brass body can cause corrosion and internal leakage may occur. If such abnormalities occur, exchange the product for a stainless steel body.
- 5) Use an oil-free specification when any oily particle must not enter the passage.
- 6) Applicable fluid on the list may not be used depending on the operating condition. Give adequate confirmation, and then determine a model, just because the compatibility list shows the general case.

### 3. Fluid quality

## <Air>

1) Use clean air.

Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

#### 2) Install an air filter.

Install an air filter close to the valve on the upstream side. A filtration degree of 5  $\mu m$  or less should be selected.

### 3) Install an aftercooler or air dryer, etc.

Compressed air that contains excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an aftercooler or air dryer, etc.

4) If excessive carbon powder is generated, eliminate it by installing a mist separator on the upstream side of valves.

If excessive carbon powder is generated by the compressor, it may adhere to the inside of the valves and cause a malfunction.

Refer to Best Pneumatics No.5 for further details on compressed air quality.



Be sure to read before handling.

Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

#### Selection

## **Marning**

### <Water>

The use of a fluid that contains foreign objects can cause problems such as malfunction and seal failure by promoting wear of the valve seat and armature, and by sticking to the sliding parts of the armature etc. Install a suitable filter (strainer) immediately upstream from the valve. As a general rule, use 80 to 100 mesh.

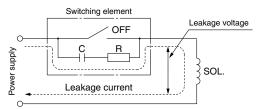
The supply water includes materials that create a hard sediment or sludge such as calcium and magnesium. Sediment and sludge can cause the valve to not operate properly. Therefore, install a water softening device, which removes these materials, and a filter (strainer) directly in front of the valve.

#### <0il>

Generally, FKM is used as seal material, as it is resistant to oil. The resistance of the seal material may deteriorate depending on the type of oil, manufacturer or additives. Check the resistance before using.

### 4. Ambient environment

Use within the operable ambient temperature range. Check the compatibility between the product's composition materials and the ambient atmosphere. Be certain that the fluid used does not touch the external surface of the product.


#### 5. Countermeasures against static electricity

Take measures to prevent static electricity since some fluids can cause static electricity.

## **≜**Caution

### 1. Leakage voltage

Particularly when using a resistor in parallel with a switching element and using a C-R element (surge voltage suppressor) to protect the switching element, take note that leakage current will flow through the resistor, C-R element, etc., creating a possible danger that the valve may not turn off.



AC/Class B built-in full-wave rectifier coil: 10% or less of rated voltage DC coil: 2% or less of rated voltage

### 2. Selecting model

Material depends on fluid. Select optimal models for the fluid.

### 3. When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s.

Mounting

## **≜** Warning

1. If air leakage increases or equipment does not operate properly, stop operation.

After mounting is completed, confirm that it has been done correctly by performing a suitable function test.

- **2. Do not apply external force to the coil section.** When tightening is performed, apply a wrench or other tool to the outside of the piping connection parts.
- 3. Mount a valve with its coil position upward, not downward.

When mounting a valve with its coil positioned downward, foreign objects in the fluid will adhere to the iron core leading to a malfunction. Especially for strict leakage control, such as with vacuum applications and non-leak specifications, the coil must be positioned upward.

4. Do not warm the coil assembly with a heat insulator etc.

Use tape, heaters, etc., for freeze prevention on the piping and body only. They can cause the coil to burn out.

- 5. Secure with brackets, except in the case of steel piping and copper fittings.
- 6. Avoid sources of vibration, or adjust the arm from the body to the minimum length so that resonance will not occur.

7. Painting and coating

Warnings or specifications printed or labeled on the product should not be erased, removed or covered up.

Piping

# **M**Warning

1. During use, deterioration of the tube or damage to the fittings could cause tubes to come loose from their fittings and thrash about.

To prevent uncontrolled tube movement, install protective covers or fasten tubes securely in place.

2. For piping the tube, fix the product securely using the mounting holes so that the product is not in the air.

## **A**Caution

### 1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

Install piping so that it does not apply pulling, pressing, bending or other forces on the valve body.

2. Avoid connecting ground lines to piping, as this may cause electric corrosion of the system.





Be sure to read before handling.

Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

Piping

# **≜**Caution

**3. Always tighten threads with the proper tightening torque.** When attaching fittings to valves, tighten with the proper tightening torque shown below.

### **Tightening Torque for Piping**

<u> </u>	
Connection thread	Proper tightening torque (N·m)
Rc1/8	7 to 9
Rc1/4	12 to 14
Rc3/8	22 to 24
Rc1/2	28 to 30
Rc3/4	201030
Bc1	36 to 38

- **4. When connecting piping to a product** Avoid mistakes regarding the supply port etc.
- 5. If the regulator and solenoid valve are connected directly, chattering may occur as both of them generate vibration. Do not connect them.
- 6. If the effective area of piping on the fluid supply side is restricted, the operation may become unstable due to differential pressure fluctuation during valve operation. The piping on the fluid supply side should match the port size of the valve.

## **Recommended Piping Conditions**

1. When connecting tubes using one-touch fittings, provide some spare tube length shown in Fig. 1, recommended piping configuration.

Also, do not apply external force to the fittings when binding tubes with bands etc. (see Fig. 2.)

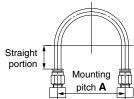



Fig. 1 Recommended piping configuration

Offit. III						
Tube	N	Straight				
size	Nylon tube	Soft nylon tube	Polyurethane tube	portion length		
ø1/8"	44 or more	35 or more	25 or more	16 or more		
ø6	84 or more	66 or more	39 or more	30 or more		
ø1/4"	89 or more	70 or more	57 or more	32 or more		
ø8	112 or more	88 or more	52 or more	40 or more		
ø10	140 or more	110 or more	69 or more	50 or more		
ø12	168 or more	132 or more	88 or more	60 or more		

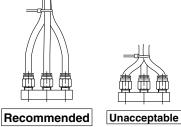



Fig. 2 Binding tubes with bands

Wiring

## **≜**Caution

- 1. As a rule, use electrical wire with a cross sectional area of 0.5 to 1.25 mm² for wiring. Furthermore, do not allow excessive force to be applied to the lines.
- 2. Use electrical circuits which do not generate chattering in their contacts.
- 3. Use voltage which is within  $\pm 10\%$  of the rated voltage. In cases with a DC power supply where importance is placed on responsiveness, stay within  $\pm 5\%$  of the rated value. The voltage drop is the value in the lead wire section connecting the coil.
- 4. When a surge from the solenoid affects the electrical circuitry, install a surge voltage suppressor, etc., in parallel with the solenoid. Or, adopt an option that comes with the surge voltage protection circuit. (However, a surge voltage occurs even if the surge voltage protection circuit is used. For details, please consult with SMC.)

## **Operating Environment**

## **≜** Warning

- 1. Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water vapor, or where there is direct contact with any of these.
- 2. Do not use in explosive atmospheres.
- 3. Do not use in locations subject to vibration or impact.
- 4. Do not use in locations where radiated heat will be received from nearby heat sources.
- 5. Employ suitable protective measures in locations where there is contact with water droplets, oil or welding spatter, etc.





Be sure to read before handling.

Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

#### Maintenance

## **∆**Warning

### 1. Removing the product

The valve will reach a high temperature when used with high temperature fluids. Confirm that the valve temperature has dropped sufficiently before performing work. If touched inadvertently, there is a danger of being burned.

- 1) Shut off the fluid supply and release the fluid pressure in the system.
- 2) Shut off the power supply.
- 3) Remove the product.

## 2. Low frequency operation

Switch valves at least once every 30 days to prevent malfunction. Also, in order to use it under the optimum state, conduct a regular inspection once a half year.

## **A**Caution

### 1. Filters and strainers

- 1) Be careful regarding clogging of filters and strainers.
- Replace filter elements after one year of use, or earlier if the pressure drop reaches 0.1 MPa.
- 3) Clean strainers when the pressure drop reaches 0.1 MPa. **2. Lubrication**

When using after lubricating, never forget to lubricate continuously.

3. Storage

In case of long term storage after use, thoroughly remove all moisture to prevent rust and deterioration of rubber materials, etc.

4. Exhaust the drainage from an air filter periodically.

## **Operating Precautions**

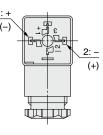
## **Warning**

- 1. If there is a possibility of reverse pressure being applied to the valve, take countermeasures such as mounting a check valve on the downstream side of the valve.
- 2. When problems are caused by a water hammer, install water hammer relief equipment (accumulator, etc.), or use an SMC water hammer relief valve (Series VXR). For details, please consult with SMC.
- 3. When the pilot type 2 port solenoid valve is closed, and pressure is applied suddenly due to the starting of fluid supply source such as pump and compressor, the valve may open momentarily and fluid may leak.
- 4.If the product is used in the conditions in which rapid decrease in the inlet pressure of the valve and rapid increase in the outlet pressure of the valve are repeated, excessive stress will be applied to the diaphragm, which causes the diaphragm to be damaged and dropped, leading to the operation failure of the valve. Check the operating conditions before use.

### **Electrical Connections**

## **▲**Caution

## Grommet

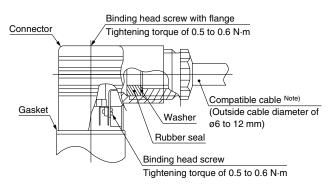

Class B coil: AWG20 Outside insulator diameter of 2.5 mm Class H coil: AWG18 Outside insulator diameter of 2.1 mm

Poted voltage	Lead wire color			
Rated voltage	1	2		
DC	Black	Red		
100 VAC	Blue	Blue		
200 VAC	Red	Red		
Other AC	Gray	Gray		

* There is no polarity.

### DIN terminal

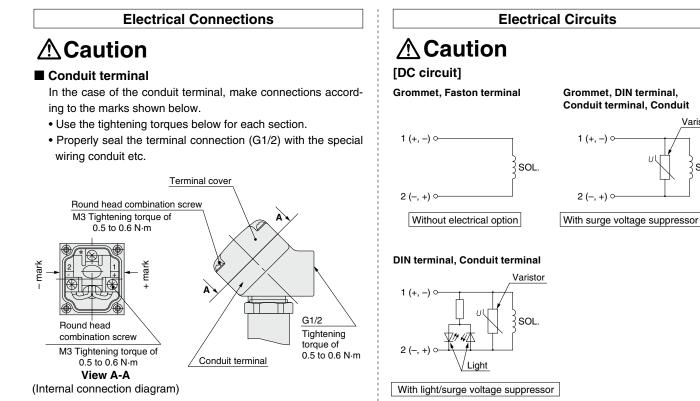
Since internal connections are shown below for the DIN terminal, make connections to the power supply accordingly.




Terminal no.	1	2				
DIN terminal	+ (-)	- (+)				
+ There is no polority						

There is no polarity.

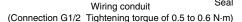
SMC


- Use a heavy-duty cord with an outside cable diameter of ø6 to 12 mm.
- Use the tightening torques below for each section.



Note) For an outside cable diameter of ø9 to 12 mm, remove the internal parts of the rubber seal before using.




Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com



### Conduit

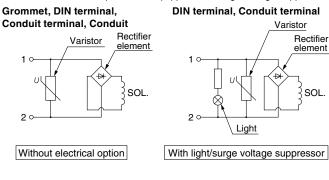
When used as an IP65 equivalent, use seal to install the wiring conduit. Also, use the tightening torque below for the conduit. Class B coil: AWG20 Outside insulator diameter of 2.5 mm Class H coil: AWG18 Outside insulator diameter of 2.1 mm





Deteductions	Lead wire color			
Rated voltage	1	2		
DC	Black	Red		
100 VAC	Blue	Blue		
200 VAC	Red	Red		
Other AC	Gray	Gray		

* There is no polarity.


(There is no polarity, except for the power-saving type.)

Description	Part no.
Seal	VCW20-15-6

Note) Please order separately.

#### [AC circuit]

* For AC, the standard product is equipped with surge voltage suppressor.



**One-touch Fitting** 

## **∧** Caution

For information on handling one-touch fittings and appropriate tubing, refer to page 47 and the KQ2 series one-touch fittings in Best Pneumatics No. 6. The KQ2 series information can be downloaded from the following SMC website. http://www.smcworld.com

Varistor

SOL.



These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "**Caution**," "**Warning**" or "**Danger**." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)^{*1}, and other safety regulations.



A Safety Instructions Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

## SMC Corporation Akihabara UDX 15F,

4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249 Fax: 03-5298-5362 http://www.smcworld.com © 2013 SMC Corporation All Rights Reserved